
Enabling Energy-Aware Collaborative Mobile
Data Offloading for Smartphones

Aaron Yi Ding∗, Bo Han†, Yu Xiao‡, Pan Hui§¶, Aravind Srinivasan‖, Markku Kojo∗ and Sasu Tarkoma∗
∗Department of Computer Science, University of Helsinki, FI-00014, Helsinki, Finland

†Department of Computer Science, University of Maryland, College Park, MD 20742, USA
‡Department of Computer Science and Engineering, Aalto University, Espoo, Finland

§Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
¶Telekom Innovation Laboratories, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

‖Department of Computer Science and Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

Abstract—Searching for mobile data offloading solutions has
been topical in recent years. In this paper, we present a
collaborative WiFi-based mobile data offloading architecture -
Metropolitan Advanced Delivery Network (MADNet), targeting
at improving the energy efficiency for smartphones. According to
our measurements, WiFi-based mobile data offloading for moving
smartphones is challenging due to the limitation of WiFi antennas
deployed on existing smartphones and the short contact duration
with WiFi APs. Moreover, our study shows that the number
of open-accessible WiFi APs is very limited for smartphones
in metropolitan areas, which significantly affects the offloading
opportunities for previous schemes that use only open APs. To
address these problems, MADNet intelligently aggregates the
collaborative power of cellular operators, WiFi service providers
and end-users. We design an energy-aware algorithm for energy-
constrained devices to assist the offloading decision. Our design
enables smartphones to select the most energy efficient WiFi
AP for offloading. The experimental evaluation of our prototype
on smartphone (Nokia N900) demonstrates that we are able to
achieve more than 80% energy saving. Our measurement results
also show that MADNet can tolerate minor errors in localization,
mobility prediction, and offloading capacity estimation.

I. INTRODUCTION

3G cellular networks are currently overloaded with data
traffic generated by various bandwidth-hungry smartphone
applications (e.g., mobile TV), especially in metropolitan
areas [9]. Although several cellular operators have already
upgraded their networks to LTE (4G) for higher capacity,
the traffic demand from end-users also continues to increase.
Mobile data offloading may relieve this problem by using com-
plementary communication technologies (considering the in-
creasing capacity of WiFi) to deliver traffic originally planned
for transmission over cellular networks.

Although WiFi has been shown to be promising for mobile
data offloading in Wiffler [2] and by Lee et al. [13], there
are still several challenging issues when offloading mobile
traffic for smartphones. First, Wiffler [2] is designed for PCs
(e.g., netbooks) on vehicular networks without considering the
offloading energy consumption. Lee et al. [13] evaluate the
energy saving of offloading through a trace-driven simulation
with several simplified assumptions, but how to harvest the
energy gain of mobile data offloading in practice is still
an open problem. Second, through our extensive war-driving

and war-walking measurements using smartphones in three
cities of US and Europe, we found that the number of open-
accessible WiFi access points (APs) is very limited. Therefore
the schemes using only open APs as in Wiffler [2] may not be
enough. Finally, the goal of previous work is to increase the
amount of delay-tolerant data traffic that can be offloaded to
WiFi networks. However, delay-tolerant applications generate
only a small amount of data traffic, compared to streaming
applications [16].

To address the above challenges, we propose MADNet, a
collaborative mobile data offloading architecture for smart-
phones. The main design principle of MADNet is to extend
smartphone battery life. According to our measurements,
transferring the same amount of data may consume more
energy on a low throughput WiFi network than transferring
over a high speed 3G access. If a scheme only aims to increase
the offloaded traffic to WiFi networks without considering
the energy consumption on smartphones, it may drain the
battery much faster than using only 3G networks. Furthermore,
due to the limitation of WiFi antennas deployed on existing
smartphones, offloading mobile data traffic for smartphones is
much more challenging than that for PCs. To compensate such
existing restrictions, a dedicated scheme is needed.

The above observations motivate the design of MADNet
that harvests the collaboration power across cellular operators,
WiFi providers, and end-users to achieve energy-aware mobile
data offloading for smartphones. In this paper, we make the
following contributions:

• We investigate and compare the performance of WiFi In-
ternet access for both netbooks and smartphones in metro-
politan areas. Our observations offer valuable insights for
future design and inspire us to exploit the predictable
nature of streaming content via data prefetching.

• We design an efficient and deployable energy-aware
algorithm to assist the offloading decision. Our algorithm,
integrated with the collaborative MADNet architecture,
is able to tolerate minor errors of input parameters
such as user location, mobility prediction, and estimation
of system offloading capacity. We also utilize content
prefetching to compensate the impact of hardware lim-
itations on smartphones.



• Our prototype implementation confirms the feasibility of
MADNet to be deployable in existing environments. By
enabling smartphones to select the most energy efficient
WiFi AP for offloading, our field experiments further
verify that MADNet can achieve notable 80% energy
saving.

The rest of the paper is organized as follows. Section II pro-
vides a thorough characterization study of WiFi Internet access
in metropolitan areas. We present the MADNet architecture
in Section III and evaluate our implementation in Section IV.
Section V covers several challenging issues. We discuss the
related work in Section VI and conclude in Section VII.

II. METROPOLITAN WIFI NETWORKS

As WiFi-based mobile data offloading is the major focus of
MADNet, the goal of our measurement study is to answer the
following two questions: (1) Is it feasible to offload mobile
data traffic to WiFi networks, given the current deployment
and availability of WiFi APs? (2) Is the network performance
of WiFi-based Internet access for moving smartphones good
enough to offload mobile traffic?

A. Accessible WiFi APs for Smartphones

We performed field studies mainly in three cities, Berlin
in Germany, Chicago and Baltimore in the US, using a tool
called 3G-WiFi. It consists of two threads: the first one
measures TCP uplink and downlink throughput and latency
to a reference server over 3G networks; the second one scans
neighboring WiFi APs and then performs the same measure-
ments as over the 3G networks for all open-accessible APs.
3G-WiFi conducts these tests over 3G and WiFi networks
periodically with 10-second intervals. We used Nokia N900
smartphones for most of the measurements and experiments
in this paper. N900 default OS, Maemo 5, is an open source
Linux distribution (2.6.28 kernel). Its WiFi chipset is Texas In-
struments WL1251. The full experimental results are available
in a technical report [10].

We chose four areas in Berlin for war-driving: two neigh-
borhoods near Nokia Siemens Networks and Schloss Char-
lottenburg, and along Kurfürstendamm avenue and Unter den
Linden boulevard (two of the most popular avenues in Berlin).
In Chicago, the war-walking was around Michigan Avenue.
We also conducted war-driving in the downtown area of
Baltimore. We summarize the statistics of detected APs in
these three cities in Table I. Accessible APs for offloading
are those that allow us to test at least one of the above
three metrics, TCP uplink or downlink throughput, or latency.
Nicholson et al. [17] reported that about 40% of APs detected
in three neighborhoods of Chicago were open in 2006 and
Wiffler [2] also found that around 40% APs encountered by
20 public transit vehicles in Amherst, MA were not encrypted.
In contrast with these results, the percentage of APs without
encryption (i.e., open APs) that we detected is very low,
less than 10% in Berlin and less than 20% in Chicago and
Baltimore. One of the possible reasons may be that more and

TABLE I
STATISTICS OF DETECTED APS IN BERLIN, CHICAGO AND BALTIMORE.

City Berlin Chicago Baltimore
Speed driving walking driving
Detected APs 4421 4588 3418
APs without 351 775 621
encryption (7.9%) (16.9%) (18.2%)
APs granting 12 18 6
IP addresses (0.27%) (0.39%) (0.18%)
Accessible APs 0 7 1
for offloading (0.0%) (0.15%) (0.03%)

more people care about the security of their home networks,
especially in big cities.1

Most of these ‘open’ APs are not accessible, as they may
apply MAC address filter or web-based authentication for
access control. The percentage of accessible APs is extremely
low, smaller than 1%, which makes the offloading solutions
using only open APs challenging. To detect and measure as
many APs as possible, we set the timeout of DHCP messages
and TCP connection setup to be 0.1 seconds. These small
values may affect the measurement results [8]. Thus, we also
conducted war-driving in a neighborhood of College Park,
MD with three different timers (1, 2 and 3s) for DHCP
discovery messages and TCP connection setup. The driving
speed was ∼20–30 km/h. The results (available in our tech-
nical report [10]) show that even in a small college town,
the percentage of open APs is less than 20%. Moreover,
there is almost no open-accessible APs in that neighborhood.
Therefore, active participation from end-users (by sharing
their home APs) is a key enabling factor for mobile data
offloading.2

Through the identifiable patterns of ESSID (Extended Ser-
vice Set IDentifier) from the collected trace of AP information
in Berlin, we found that there are a large number of APs
(∼1000) deployed/distributed by cellular operators (see details
in [10]). We also identified 616 WiFi APs produced by 2Wire,
Inc. and distributed by AT&T to home users from the Chicago
trace, and 334 WiFi APs produced by Westell or Abocom
and distributed by Verizon from the Baltimore trace. These
numbers are lower bounds because users may change the
ESSID after they get the APs from their providers.

B. WiFi-based Internet Access for Moving Smartphones

We conducted experiments at both walking and driving
speeds to investigate the performance of WiFi-based Internet
access for moving smartphones.

1) Experimental Setup: We measured the amount of trans-
ferred data, duration of TCP connections and average TCP
throughput from two servers, a remote server and a local server
running on a laptop, to our moving smartphone. As shown
in Figure 1, the laptop was connected to a 100M Ethernet

1We confirmed that in the US most of the home APs distributed by AT&T
U-verse and Verizon FiOS are encrypted by default (with their technical
support of customer services). The same is true for Deutsche Telekom T-
Home in Germany.

2End-users may also be WiFi providers in MADNet, and we discuss the
security issues of WiFi sharing in Section V.
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Fig. 2. Map for the walking and driving
experiments. The locations of WiFi APs are
marked.
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Fig. 3. The mean downlink TCP throughput of
a smartphone moving at walking speed.
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phone and a netbook at driving speed.
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Fig. 1. The experimental setup.

port of the AP, which was connected to a campus network.
The smartphone was associated with the AP through its WiFi
interface. The remote server was located in an industrial
research lab in Europe. The experimental setup was similar
to that in Hadaller et al. [8]. The major differences are that
we used a smartphone as the client, instead of a laptop, and
experimented with both walking and driving speeds. We did
all the experiments in an apartment neighborhood in College
Park, MD and show the map for these experiments in Figure 2.

2) Moving Smartphones at Walking Speed: We conducted
a group of outdoor experiments for moving smartphones at
walking speed, passing by the home AP. The AP is around
36 meters away from the road. To guarantee that the duration
of experiment is longer than the actual AP association time
of the smartphone, we walked from one location to another
along the road for the selected trail. Both locations are out
of the coverage area of the AP. We performed experiments
for both directions along the road, to the east and west. We
measured three settings for this scenario: remote server with
DHCP, local server with DHCP, and local server with static
IP address configuration. For each setting, we repeated the
experiments 10 times.

We plot the mean TCP downlink throughput and standard
deviation in Figure 3. As we can see from the figure, we can
improve TCP throughput by at least 200% when connecting
to the local server instead of the remote server, because the
capacity of a wireless link between smartphones and WiFi APs
is usually higher than the available capacity between WiFi APs
and the Internet [7]. Although similar observations have been
made by recent studies of vehicular Internet access [6], another
benefit of separating the wireless links from wired ones is that
we may reduce data transmission time, and thus save energy
consumption on smartphones.

The differences in throughput when walking towards dif-
ferent directions may be caused by the location of home AP
and the antenna direction of smartphone, as it was held in
hands during the experiments. Thus, the duration of WiFi
connectivity is ∼75 seconds when walking towards the east
and ∼25 seconds longer (100 seconds) to the west. As we
conducted all the experiments in the wild, there are several
other co-channel APs in the experimental area and other
users may use them for extensive data transfer during the
experiments.

3) Moving Smartphones at Driving Speed: Although mov-
ing speeds may not affect 3G throughput too much, they do im-
pact the performance of WiFi-based vehicular Internet access.
Slow vehicle speed usually leads to high WiFi throughput [5].
We compare the performance of smartphones and netbooks
for vehicular Internet access. The experimental setup shown
in Figure 2 is the same as the setting of local server with static
IP address for the walking scenario. We did not use netbooks
for the walking experiments because we do not consider it as
a typical usage scenario of netbooks. As shown in Figure 4,
netbooks perform much better than smartphones, achieving
higher throughput (1.8 vs. 1.0 Mbps).

Vehicular Internet access and the mobility problems of WiFi
have been widely investigated [2], [4], [8]. We summarize
the devices and antennas in use in our technical report [10].
With no exception, external antennas were used for all of
PCs. It is well-known that antenna plays an important role in
WiFi-based Internet access. For example, Deshpande et al. [5]
reported that a 12 dBi antenna provides better connectivity
than 5 and 7 dBi antennas. However, due to the limited size
of smartphones, they may not be able to use external antennas.
Thus, mobile data offloading for smartphones on vehicles is
much more challenging than that for PCs and that for those
with pedestrians.

4) Energy Concern for Smartphones: To investigate the
energy consumption, we further measured the energy con-
sumption of ∼20 MB data transfer from a server to Nokia
N900 and Samsung Nexus S smartphones through 3G and
WiFi networks, using iperf TCP. This experiment is conducted
in Finland through another 3G network with higher through-
put. We increased the distance between the smartphones and
WiFi AP to achieve low throughput WiFi data transfer. As we
can see from the results in Table II, when WiFi throughput
is lower than 3G, the data transfer through WiFi networks
consumes more energy than that of 3G. These results verify



TABLE II
MEASURED ENERGY CONSUMPTION OF 20 MB DATA TRANSFER.

N900 Nexus S
Energy Throughput Energy Throughput
Joule Mbps Joule Mbps

3G 109.4 1.89 65.40 1.99
WiFi 116.0 0.422 191.7 0.302

that the solutions that utilize every offloading opportunity
without considering the energy consumption may reduce the
battery life of smartphones.

C. Insights

Our measurements offer the following insights:
(1) For WiFi-based mobile data offloading, the number of

open-accessible APs is very low, verifing the trend that less
and less WiFi APs are open. Therefore, we propose collabo-
ration among cellular operators, WiFi service providers and
end-users to increase the offloading opportunities.

(2) The performance of WiFi-based Internet access for
moving smartphones is worse when connecting to remote
servers than connecting to a local server, and is also worse
than that of PCs (e.g., netbooks). To address this challenge,
we propose to prefetch predictable data traffic at WiFi APs,
which can increase the amount of offloaded mobile traffic and
save energy consumption on smartphones.

For the low throughput presented at driving speed, we
choose to evaluate our proposal for smartphones only at
walking speed (in Section IV). We note that although similar
studies have been conducted earlier [2], [6], [15], the focus is
different. Our findings provide valuable insights in this domain
and lay the foundation for the proposed collaborative MADNet
architecture.

III. MADNET ARCHITECTURE

A. Overview

We advocate that mobile data offloading is win-win-win for
cellular operators, WiFi service providers, and end-users, and
that they should cooperate to make it feasible and effective.
With offloading solutions, cellular operators may be able to
meet the rising traffic demand without significantly increasing
their CAPEX (capital expenditure) and OPEX (operating ex-
penses). Moreover, they can provide mobile data offloading as
a value-added service, and thus expand their user base. The
offloading schemes may also bring third-party WiFi service
providers more customers without service contracts, and thus
extra revenue. Finally, end-users can benefit from mobile data
offloading through higher data rate and longer battery life for
their smartphones.

We aim to design an energy efficient approach to offload
real-time streaming traffic for smartphones that are in motion.
When people walk, although they usually do not read news
or watch video, they often listen to music. Also, more and
more people watch video using smartphones when riding on
metro buses. According to Cisco Visual Network Index3, most

3http://www.cisco.com/en/US/netsol/ns827/networking solutions sub
solution.html (verified in July 2012)
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Fig. 5. Communications between the three MADNet components.

of the mobile data traffic in 2015 will be either music or
video streaming. Although streaming traffic cannot tolerate
much delay, it is feasible to predict the delivery of non-live
streaming traffic. When mobile users listen to music online,
they usually make a playlist to include all the songs they
like. With the playlist, we can know the expected streaming
traffic for the next several minutes. The same is true for video
streaming. Once a mobile user starts to watch video online, the
future streaming traffic is predictable. Therefore in MADNet,
smartphones may start data streaming immediately over 3G
networks and meanwhile try to find WiFi APs that can prefetch
data and deliver data with lower energy cost.

B. Collaborative Mobile Data Offloading

MADNet has the following three key design goals:
• Reducing the energy consumption of smartphones, which

is realized by the energy-aware offloading decisions;
• Offloading the mobile data traffic for smartphones, which

is enabled by the collaborative architecture;
• Making the offloading process transparent to end-users.
We show in Figure 5 the three major software

components of MADNet: a client module on smartphones
(Smart-Client), a proxy on WiFi APs (Proxy-WiFi)
and another proxy in the cellular access networks
(Proxy-Cellular). To coordinate the split of data
traffic between these two networks, we set up two control
channels, as shown in Figure 5.

MADNet makes offloading decisions based on the contex-
tual information of smartphones. First, Proxy-Cellular
knows the locations of the neighboring WiFi APs of a given
smartphone, because these locations are fixed (and known
through services such as wigle.net) and some of them are
deployed by cellular operators. Second, as people are creatures
of habit and usually take similar paths everyday, it is feasible to
predict their mobility patterns using history information [18].

When a mobile user wants to request content from the
Internet, Smart-Client will send the geographical loca-
tion and moving speed and direction to Proxy-Cellular.
Smart-Client can easily retrieve this information from
the wireless interface and various sensors (e.g., WiFi, GPS,
and accelerator). To follow the common practice of “Wake
on Wireless” [24] and thus reduce energy consumption of
smartphones, Smart-Client turns on the WiFi interface
and the sensors only when users issue content requests.

Using the proposed offloading decision algorithm,
Proxy-Cellular determines whether the offloading of



Algorithm 1 Energy-Aware Offloading Decision Algorithm
Require: The power of data reception P3G for 3G and PW

for WiFi.
Require: The head and tail energy ET of 3G and Eoo for the

offloading related overhead.
1: Predict the throughput B3G for 3G network and estimate

the offloading capacity CW and throughput BW of a WiFi
AP.

2: Predict the prefetching capability F of this WiFi AP.
3: Calculate the WiFi offloading duration CW /BW and the

time to receive the same amount of data through 3G
network CW /B3G.

4: if F ≥ CW and the following inequality holds

ET + P3G · CW /B3G − PW · CW /BW > k · Eoo (1)

then
5: Offload mobile data traffic to this WiFi AP.
6: else
7: Repeat the above for other available APs.
8: end if

cellular traffic to a given WiFi AP can potentially save energy
on smartphones and notifies Proxy-WiFi to prefetch
the content if possible. With the context information from
Smart-Client as input, the heavy computational tasks,
including positioning and mobility prediction are hence
offloaded to Proxy-Cellular. After receiving information
from Proxy-Cellular about the WiFi AP (e.g., MAC
address, ESSID and time to associate) for offloading,
Smart-Client can initialize the WiFi association and
download prefetched data accordingly.

In this paper, we focus on the case that each Proxy-WiFi
serves one Smart-Client at a time to investigate the
effectiveness of our proposal. We note that we can easily
extend the MADNet architecture to support multiple devices
simultaneously by integrating efficient scheduling algorithms.

C. Energy-Aware Offloading Decision

We propose an energy-aware mobile data offloading de-
cision algorithm for smartphones in Algorithm 1. Although
WiFi is generally more energy efficient than 3G [3], offloading
mobile data traffic to WiFi networks may cause extra energy
consumption to get location information and to associate with
the WiFi APs that are predicted to be available.

MADNet performs WiFi-based mobile data offloading only
when the receiving of prefetched data from WiFi APs (instead
of streaming data through 3G networks) saves more energy
than the extra energy consumption overhead discussed above.
We describe this requirement rigorously in inequality (1)
of Algorithm 1, where k is a parameter to accommodate
measurement errors. For small value of k, the estimation errors
may cause more energy consumption on smartphones due to
offloading. On the other hand, we may lose some offloading
opportunities if k is too large. We set k to be 1.1 tentatively
for the experiment.

The energy-aware offloading decision is affected by the
throughput of 3G and WiFi networks. For the measurement
study of Wiffler [2] in Amherst, the downlink median TCP
throughput is 600 Kbps for 3G and 280 Kbps for WiFi. In
this case, although offloading 3G traffic to WiFi networks can
reduce 3G usage, it may cause more energy consumption on
smartphones, as the duration of WiFi data transmission dou-
bles that of 3G. In another measurement study by Deshpande
et al. [5], WiFi offers substantially higher median throughput
than 3G, ∼2000 Kbps vs. ∼500 Kbps,4 respectively. For this
scenario, WiFi-based mobile data offloading may potentially
reduce the energy consumption of smartphones.

We need to know the predicted throughput of 3G networks
and the WiFi offloading capacity (i.e., the number of bits we
can offload to WiFi networks) when calculating the above
energy saving. Through an eight-month measurement study,
Yao et al. [26] show strong correlation between cellular
throughput and location for 3G HSDPA networks, and thus it
is feasible to predict 3G throughput using history and location
information. As pointed out in Wiffler [2], we can also estimate
the offloading capacity of WiFi networks using existing work
like BreadCrumbs [18]. To accommodate the estimation errors,
we use a lower value (e.g., the 30th percentile) for WiFi
throughput and a higher value (e.g., the 70th percentile) for 3G
throughput, instead of the median. The maximum prefetching
capability F is defined as the product of the Internet backhaul
throughput for the WiFi AP and the prefetching duration (from
the notification time of prefetching to the expected dissociation
time of Smart-Client from the WiFi AP). To better utilize
the capacity of a WiFi link, the result of the offloading decision
will be negative if this prefetching capability is smaller than
the estimated offloading capacity.

To calculate the saved energy, we assume that 3G and WiFi
interfaces keep at the same data reception power level during
the data transfer (CW /B3G and CW /BW ), which is conser-
vative and gives the lower bound of actual energy saving.
This assumption is reasonable for 3G interfaces. Due to the
radio resource control of cellular networks, after transmitting
or receiving a packet the 3G radio stays at high power state and
drops to low power only when the interface has been inactive
for several seconds [3]. This state transition also introduces
significant head (from low power to high at the beginning)
and tail (from high power to low at the end) energy, which is
considered as ET in (1) of Algorithm 1.

In a nutshell, MADNet avoids the offloading of mobile
data traffic to low throughput WiFi networks and enables
smartphones to select the most energy efficient WiFi AP if
possible. It adopts data prefetching at WiFi APs which can
further improve the utilization of WiFi channels and reduce en-
ergy consumption on smartphones. Note that the performance
of streaming applications is not affected by these offloading
decisions, because when offloading is not possible or feasible
(e.g., caused by incorrect mobility prediction) MADNet relies

4The contradictory results reported in the above studies may be caused by
the fact that Wiffler [2] used an 802.11b radio for all the experiments, which
limits the maximum PHY bit rate to be 11 Mbps.



completely on 3G networks for data transfer.

IV. IMPLEMENTATION AND EVALUATION

We implement a prototype to explore the gains of mobile
data offloading for smartphones, and evaluate its performance
in a live environment with smartphones in motion.

A. MADNet Implementation

1) Proxy-WiFi: We implement Proxy-WiFi as a ser-
vice daemon on Linux platform. Once Proxy-WiFi starts
it will connect to Proxy-Cellular and wait for instruc-
tions of data prefetching for the downlink traffic. After
Proxy-WiFi has prefetched data contents on behalf of
mobile users, it will save them at a temporal buffer and
feed them to mobile users. The amount of data to prefetch
is determined by the estimated WiFi offloading capacity. As
we focus on real-time streaming applications, we implement
Proxy-WiFi for downlink traffic in the current prototype.

2) Proxy-Cellular: Proxy-Cellular’s major
functions are to estimate the location and predict the
mobility of end-users, make offloading decisions, forward
content requests to corresponding APs and coordinate the
authentication between smartphones and APs when necessary.
We implement a WiFi fingerprint based localization scheme,
similar to the standard RADAR approach [1]. We also
implement a modified version of the KNT mobility prediction
algorithm [23] by considering the regularity of human
mobility. The output of the mobility prediction algorithm
is a group of WiFi APs that are predicted to be visited by
Smart-Client. We run the offloading decision algorithm
described in Algorithm 1 to select the WiFi APs that can
achieve the maximum energy reduction. If the predicted
WiFi-AP set is empty or none of the WiFi APs can satisfy the
requirements specified in Algorithm 1, Proxy-Cellular
will notify Smart-Client to keep using the 3G network.
We implement Proxy-Cellular on several MADNet
servers, since currently it is hard to access and run our code
on the base stations of operational cellular networks.

3) Smart-Client: We implement a music streaming
application with Smart-Client, called MStreamer. Once
a playlist is given by a mobile user, MStreamer will
start to stream the first music over 3G networks. At the
same time, Smart-Client sends the context information
to Proxy-Cellular to make the offloading decision. By
design, both WiFi and GPS can be used to obtain positioning
context. To save energy Smart-Client prioritizes WiFi
over GPS and will use GPS only if WiFi positioning fails.
If Proxy-Cellular chooses to offload streaming traffic
to WiFi networks, it will notify Smart-Client to submit
the whole playlist and then forward the prefetching instruc-
tions to Proxy-WiFi running on the WiFi AP that the
smartphone will visit soon. Once the smartphone enters the
coverage area of this WiFi AP (determined by a timer set by
Proxy-Cellular based on mobility prediction), it starts to
download the prefetched songs and save them into a temporal

buffer. The MStreamer can then play the next music directly
if it is in the buffer and avoid the steaming over 3G networks.

Although the cooperative architecture has several require-
ments on WiFi APs (e.g., storage space to prefetch data), we
note that it is feasible on modern APs which are programmable
and have USB ports to attach storage devices.5 Moreover,
smartphones usually have several GB storage space (32 GB
for Nokia N900), which is enough to buffer prefetched data.

B. Performance Evaluation

Our evaluation consists of two parts: 1) we first evaluate
the impact of mobility prediction and data prefetching on
the performance of MADNet; 2) we then estimate the energy
savings of mobile data offloading for music streaming applica-
tions using the measurement data obtained from static devices,
since it is hard to measure directly the energy consumption
for moving smartphones. We did the experiments along the
Limingantie street in Helsinki, Finland. The experimental
setup is similar to that shown in Figure 2 and we use a roadside
AP to evaluate the outdoor scenario.

We emphasize that MADNet can avoid handoffs between
different WiFi APs, thanks to the coordination using the con-
trol channel via the 3G network. Thus, performance evaluation
with a single AP should be enough for our purpose. Moreover,
benefiting from the cooperative architecture of MADNet, there
is no fundamental difference between our WiFi AP under test
and others, such as commercial APs and encrypted home APs.

1) Difference Between Prefetching and Downloading:
To evaluate the potential energy savings, we measure the
amount of prefetched data (determined by the estimated
WiFi offloading capacity) and the actual amount of data that
Smart-Client can download during the association with
the WiFi AP (i.e., the actual offloading capacity). Since we
calculate the estimated offloading capacity by considering the
location of users, their future mobility, and history information
about WiFi throughput, our evaluation takes into account
the effectiveness of WiFi-fingerprinting localization, mobility
prediction and prefetching. We run the experiments 10 times
for each direction, to the east and the west, and plot the
results in Figure 6 and 7. If Smart-Client finishes the
downloading of prefetched data when it is still connected with
the WiFi AP, it downloads some dummy files to measure the
actual offloading capacity. As we can see from these figures,
for around 85% of the runs, we can fully utilize the WiFi link
(i.e., the amount of downloaded data is smaller than that of
prefetched data with average gap around 4.8 MB).

2) Locations to Start Association: We also measure the
location where Smart-Client starts the WiFi association
and plot the results of 10 runs for each direction in Figure 8.
Our field study shows that the coverage range of the deployed
WiFi AP is about 30 meters. On average, when walking to the
east, Smart-Client starts to associate with the AP when
it was around 33.3 meters away from the AP. The average

5For example, (NaDa) [25] has been proposed to leverage the computing
and storage capabilities on ISP-controlled home gateways to reduce energy
consumption of Internet-based video streaming services.
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Fig. 8. Distance between smartphone and WiFi
AP when Smart-Client starts WiFi associa-
tion.

distance was 29.9 meters when walking to the west. The
above results demonstrate that WiFi fingerprinting localization
and existing mobility prediction schemes are good enough to
support WiFi-based mobile data offloading.

3) Energy Savings: As we focus on the offloading of down-
link cellular traffic in this paper, we summarize our measure-
ments for power of 3G and WiFi downlink data transmission
with TCP, P3G and PW , and extra energy consumption of WiFi
offloading in Table III, using Monsoon Power Monitor (http://
www.msoon.com/LabEquipment/PowerMonitor/) with 5 KHz
sampling rate. We repeated each measurement 10 times and
report the average results and standard deviations. The N900
data is used to estimate the energy saving of our proposal.

The offloading related overhead Eoo in Algorithm 1 includes
EW on and EW off to turn on and off WiFi radio, Escan for
WiFi localization based on radio beacons (e.g., RADAR [1]),
and Easso of association with the WiFi AP specified by
Proxy-Cellular. As we use static IP address configura-
tion, instead of DHCP, we can save the energy consumption
of acquiring IP address, which is ∼4.8 Joules for Nokia N900.
We emphasize that another benefit of using 3G as a control
channel is that smartphones can scan only the channel of the
specified WiFi AP and avoid complete scanning of all possible
channels. For N900, the head and tail energy ET of 3G is ∼5.4
Joules, which is used in our evaluation.

EGPS shows the energy consumption of AGNSS (Assisted
Global Navigation Satellite System) location method with
assistance data from external location servers. It takes 14
seconds on average for a cold-start GPS to get the first accurate
fix using AGNSS. For the location method using only internal
GPS (i.e., GNSS), the cold-start duration is around 20 seconds
with ∼6.30 Joules energy consumption. Thus, we prefer the
localization schemes that leverage WiFi fingerprint to GPS.

We also present the results for Nokia E71 (measured us-
ing its Energy Profiler application) and Samsung Nexus S
(measured using Monsoon Power Monitor) in Table III. We
used AGNSS for E71. The duration to get the first accurate
fix ranges from 6.7 to 43 seconds and thus the average
and standard deviation of EGPS are high for E71. EW on

of E71 includes the energy consumption of turning on its
WiFi interface, association with an AP and the automatic

configuration of IP address through DHCP, as it is hard to
separate these operations on E71. Since AGNSS does not
work on our Nexus smartphone, EGPS of Nexus is for the
GNSS location method and thus is higher than other two
(using AGNSS). These results verify that WiFi fingerprint
localization is more energy efficient than GPS. These results
also show that the receiving power of WiFi interfaces is lower
than that of 3G for these three smartphones. For the real
deployment of MADNet, we can get the power values using
either existing online estimation tools (e.g., PowerTutor [28])
or offline profiles built for different types of smartphones.

We estimate the energy saving of offloading mobile data
traffic to the deployed outdoor AP using the results in Table III
combined with the above experimental results. We present the
energy savings for the walking experiments in Table IV, where
the first row of the results is for walking to the east and
the second row is for the west. E3G and EW are the energy
consumption of data transfer through 3G and WiFi networks.
We turn on the WiFi radio twice during the offloading, first
for WiFi localization and second for WiFi association.

During WiFi fingerprinting based localization,
Smart-Client scans neighboring APs three times to
collect WiFi beacons. n is the number of associations to
connect to the WiFi AP. Thus the value of Eoo is set as

Eoo = 2× EW on + 2× EW off + 3× Escan + n× Easso.

The results presented in Table IV show that MADNet can
achieve more than 80% energy saving on smartphones when
offloading mobile traffic to WiFi networks, benefiting from the
collaborative MADNet architecture.

We also note that we did not consider the energy
consumption of control information exchange between
Smart-Client and Proxy-Cellular due to the small
amount of data exchanged (usually less than 1KB). As these
information is transferred in parallel with the music streaming,
the head and tail energy is thus avoided. Moreover, we use
static IP address configuration enabled by the control channel
of MADNet and thus avoid the energy consumption for getting
an IP address through DHCP.

To gain more insights, we also present the estimated energy
savings in Table V for scenarios where 3G throughput is set



TABLE III
AVERAGE MEASURED POWER (WATT) AND ENERGY CONSUMPTION (JOULE) RELATED TO MOBILE DATA OFFLOADING.

Device OS P3G PW EW on Easso EW off Escan EGPS

N900 Maemo (Nokia) 1.10±0.017 0.645±0.023 0.18±0.025 0.28±0.13 0.13±0.021 0.53±0.077 4.0±1.3
E71 Symbian (Nokia) 1.33±0.023 1.28±0.032 6.4±0.19 n/a 0.13±0.025 0.11±0.036 9.0±6.5
Nexus S Android (Google) 0.891±0.022 0.658±0.16 0.27±0.019 0.25±0.049 0.29±0.016 0.27±0.017 10±1.3

TABLE IV
MEASURED OFFLOADING CAPACITY, AVERAGE THROUGHPUT OF 3G AND

WIFI NETWORKS AND ESTIMATED ENERGY SAVING.
CW B3G BW Eoo E3G EW Saving
MB Mbps Mbps Joule Joule Joule %

East 27.2 0.8 3.5 3.4 304.6 39.3 85.98
West 22.9 0.8 3.2 3.5 257.3 38.9 83.52

TABLE V
ESTIMATED ENERGY SAVING FOR DIFFERENT 3G THROUGHPUT.

0.5 Mbps1.0 Mbps1.5 Mbps2.0 Mbps3.0 Mbps5.0 Mbps
East 90.7 % 81.7 % 72.9 % 64.2 % 47.5 % 16.3 %
West 89.1 % 78.5 % 68.2 % 58.2 % 38.9 % 3.4 %

virtually to be 0.5, 1.0, 1.5, 2.0, 3.0, and 5.0 Mbps. The key
observation is that when 3G throughput increases, the gain
of energy consumption by offloading mobile data to WiFi
networks decreases due to the shorter 3G transmission duration
at higher throughput.

V. DISCUSSION

A. Distributed Content Caching

Usually, WiFi service providers prefer to over-subscribe the
backhaul connections from the APs to Internet and thus these
backhaul links become the communication bottleneck. We aim
to explore the limited storage space (e.g., several GB through
mounted USB drives) on WiFi APs to cache data locally. The
challenge here is to understand the content access patterns
from mobile users, without which it is hard to decide the
right locations to cache the right content. Similar to data
prefetching, caching data on local APs can also fully utilize
the bandwidth of WiFi links.

B. Incentives

Social participation is becoming an enabling factor for more
and more mobile applications. How to integrate an effective
incentive scheme into MADNet to encourage active participa-
tion is another challenging problem. Cellular operators may
offer reduced subscription fees to users who are willing to
share their home APs with others and thus increase WiFi AP
availability. There may also be issues related to the pricing and
billing models for traffic offloading between different cellular
operators and WiFi providers. For example, in countries like
Canada where usage-based billing has been introduced for
Internet access, people cannot share their home APs with
others for free and mobile users may need to pay for the traffic
offloaded to WiFi networks (probably cheaper than 3G traffic).

C. Security and Privacy

For security and privacy, when MADNet redirects mobile
data traffic to WiFi APs, cellular networks can pass the

identity information of end-users to WiFi networks and thus
enable various security models to prevent illegal uses of these
APs. Meanwhile, we may require mobile users to tunnel
their packets to one of their trusted points and handoff the
access control responsibility to that endpoint [22]. Thus, all
the offloaded traffic will go through that trusted point and
can be identified if the mobile users illegally download music
or video. For example, SWISH [14] has utilized a similar
technology to secure the shared WiFi networks and to protect
the privacy of mobile users. Note that mobile data offloading
is transparent to content/cloud service providers and MADNet
will not reveal the end-user’s location to them.

VI. RELATED WORK

A. Cellular Traffic Offloading

Among several existing schemes for cellular traffic of-
floading, Femtocells as an extension of the macrocells of
cellular networks were originally proposed to offer better
indoor services. When indoor users switch from macrocells to
femtocells, femtocells can potentially offload cellular data traf-
fic. However, the femtocell signal may interfere with nearby
macrocell transmissions, since they work on the same spec-
trum as macrocells [27]. Recently, how to offload cellular traf-
fic through mobile-to-mobile opportunistic communications is
also investigated as a complementary offloading solution [9].

WiFi is another attractive technology for cellular traffic
offloading. For example, Korhonen et al. [12] analyze the latest
trend of network controlled offloading and compare industrial
standardization solutions. Hou et al. [11] propose a transport
layer protocol to offload 3G data traffic to WiFi hotspots for
vehicular access networks. Ristanovic et al. [20] propose an
algorithm, called HotZones, to offload delay-tolerant cellular
content to WiFi APs and evaluate the performance through
trace-driven simulations.

Wiffler [2] aims at maximizing the amount of 3G traffic
offloaded to WiFi networks for PCs on vehicular networks. In
contrast to Wiffler, MADNet targets at smartphones which are
much more challenging than PCs (as shown in Section II).
MADNet also advances the state-of-the-art by taking the
energy consumption of smartphones into account when mak-
ing offloading decisions. In addition, Wiffler uses only open
WiFi APs while MADNet also considers the support from
cellular operators, WiFi providers, and end-users to increase
the offloading opportunities.

Using a trace-driven simulation, Lee et al. [13] show that
WiFi networks can offload around 65% of mobile data traffic
for the traces collected from about 100 iPhone users. The
simulator assumes that data traffic can be offloaded to WiFi
networks whenever a user connects a smartphone to a WiFi AP



in the traces, thus the offloading decision is actually made by
these users. Compared to their work, our proposed offloading
solution is transparent to users. Furthermore, we implement
a prototype on Nokia N900 smartphones and evaluate its
performance in live environment.

A recent measurement study examining the relationship of
WiFi versus 3G usage also explored the antenna limitation of
smartphones [15]. Although the target is different from ours,
their findings confirm that a dedicated offloading scheme for
smartphones is necessary.

B. Leveraging Multiple Radio Interfaces on Mobile Devices

Nowadays smartphones are typically equipped with multiple
radio interfaces, including Bluetooth, WiFi and 3G cellular,
and there are several existing systems leveraging these inter-
faces for energy efficiency and better throughput performance.
For example, CoolSpots [19] explores policies that enable
a mobile device to automatically switch between WiFi and
Bluetooth interfaces by considering their different transmission
ranges, and thus reduces the energy consumption of wireless
communication. MAR [21] is a multi-homed mobile access
router that exploits multiple channel access technologies pro-
vided by different service providers. The MAR implemen-
tation demonstrates the benefits of aggregating link capacity
from three cellular operators for different applications.

Comparing to previous work, MADNet uses 3G networks
to provide primary data channels and to facilitate offloading
procedures. At the same time, it employs WiFi interfaces to
prefetch predictable data and thus improves energy efficiency
of data transfer.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we propose the MADNet mobile data of-
floading architecture that leverages WiFi networks to migrate
mobile traffic from cellular networks. The design choices
are motivated by experimental results from war-driving and
war-walking and measurement study of WiFi-based Internet
access for moving smartphones. By considering the battery
constraints of smartphones, we design the first energy-aware
offloading decision algorithm with the goal of improving
energy efficiency for smartphones. We show that the potential
energy saving of offloading depends on the throughput of
3G and WiFi networks, and also the amount of data we can
offload. We confirm the feasibility of our proposal through
prototype implementation on Nokia N900 smartphones and
evaluate the performance in the wild, which verifies the
effectiveness of MADNet.
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