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Abstract
The ageing European population and the expected increasing
number of medical emergencies put pressure on the med-
ical sector and existing emergency infrastructures, which
calls for new innovative digital solutions. In parallel, the
increasing utilization of the Internet of Things (IoT) has
enabled the collection of real-time data, allowing for the
autonomous detection of acute medical emergencies. In this
context, this paper presents two distinct machine learning
(ML) models that leverage sensor data to autonomously de-
tect emergencies. These models are intended to be integrated
into an IoT-enabled next-generation emergency communi-
cations system (NG112) capable of detecting emergencies,
initiating emergency calls (eCalls), and providing relevant in-
formation to emergency call takers, which reduces response
time. Thereby, this paper focuses on the accountable detec-
tion of myocardial infarctions (MIs), commonly known as
heart attacks, based on electrocardiogram (ECG) data. To
realize this, two disparate models working on fundamen-
tally different data structures are proposed and compared: A
one-dimensional convolutional neural network (CNN) oper-
ating on the raw ECG signals and a GoogLeNet-based model
trained on ECG images. The PTB-XL dataset is used to eval-
uate the proposed models, and the results indicate the 1D
CNN exhibits a favourable trade-off between precision and
recall for the eCall use case. Finally, the paper also discusses
applying eXplainable AI (XAI) methods to achieve explain-
ability for the ML models, paving the way for an accountable
and reliable implementation in safety-critical systems.

CCS Concepts: • Computingmethodologies→Machine
learning; • Applied computing → Health informatics; •
Social and professional topics →Medical technologies.

Keywords: machine learning, emergency detection, myocar-
dial infarctions, explainable AI, datasets, neural networks
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1 Introduction
The pervasive and consistently increasing adoption of the In-
ternet of Things has enabled the collection of large amounts
of real-time data at the Edge. Environmental and near-body
sensors such as smartwatches, accelerometers, or wearable
ECG sensors facilitate accumulating and monitoring an accu-
rate and temporally updated representation of users’ ambient
conditions and body vitals. This creates the opportunity to
leverage the available IoT data to automatically detect pat-
terns and anomalies that may indicate emergencies such as
fires, falls, or even acute cardiac issues.

At the same time, the constantly ageing European society
[6] poses challenges to the medical system and emergency
infrastructure, and calls for innovative and automated digital
solutions. Precisely, the prompt detection of medical emer-
gencies and immediate initiation of medical assistance are
becoming increasingly important in light of the rising num-
ber of elderly patients [6]. In this context, the advancing
digitalization and the increased availability of IoT sensor
data can significantly contribute to the automated detection
of emergencies leading to an early response.
Therefore, we present and compare two disparate ap-

proaches for realising ML-based models that leverage sensor
data to automatically detect acute medical emergencies in
this paper. We investigate these models in the context of
the use case of an IoT-enabled and IP-based next-generation
emergency communications system. Precisely, we aim to in-
tegrate the presented models into an existing NG112 system
that is capable of (1) automatically detecting emergencies at
the patient side based on IoT sensor data, (2) automatically
initiating emergency calls in case emergencies are detected,
and (3) providing the emergency call taker with relevant
information and reasoning behind the decision making.
In this paper, we will address the automated detection

of myocardial infarctions exemplifying a time-critical emer-
gency. Indeed, cardiovascular diseases, including MIs, are the
leading cause of death worldwide [20], and early detection
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Figure 1. Integration of the ML-based emergency detection into the NG112 emergency e-calling system EMYNOS.

is crucial in reducing mortality rates. MIs can be diagnosed
with ECGs, which measure the heart’s electrical activity.

Given that the automated ML-based detection of MIs and
the autonomous establishment of emergency calls repre-
sent a safety-critical application, the accountability of the
discussed ML-based system is of utmost importance. Expla-
nations of AI systems can help enhance the accountability
of the system if they are interpretable to the decision mak-
ers [3]. We will therefore give an outlook on how to apply
and compare different explainable AI (XAI) methods to the
proposed MI detection models. This is also the motivation
for the two disparate methods discussed in our work. Our
first method uses the ECG as a waveform time series data.
However, due to the availability of a number of XAI methods
for image classifiers, in our second method, we use ECGs
as images for MI detection. The envisioned results are sup-
posed to provide the patient and emergency call taker with
reasonable explanations about decisions of the ML models.

In summary, we contribute to the field of accountable ML
in safety-critical systems by:

• Proposing and comparing two ML models for MI detec-
tion on ECG data in IoT-based NG112 systems,

• Demonstrating the application of XAI methods to en-
hance the models’ accountability,

• Recommending future research directions for evaluating
the accountability of the proposed models.

To achieve this, we start with presenting the NG112 system
and relatedwork in Section 2, followed by a description of the
methodology (Section 3) and evaluation results (Section 4).
An outlook on applying XAImethods is provided in Section 5,
followed by a conclusion in Section 5.

2 Background
In this section, we discuss the NG112 emergency commu-
nication system which serves as the application basis for

the work provided in this paper, and also highlight the most
relevant work in the context of MI detection using ML.

2.1 The NG112 emergency communication system
For the above-mentioned IoT-enabled emergency commu-
nication system, we build on the results of the EU-funded
H2020 project EMYNOS (nExt generation eMergencY com-
muNicatiOnS)1. In the course of this project, Rebahi et al.
[18] specified an NG112 emergency communication system
that allows (1) to integrate various eHealth sensors to imple-
ment appropriate monitoring and (2) to establish VoIP-based
emergency calls that provide the functionality to transmit
sensor data between the caller and callee. Figure 1 visual-
izes a simplified version of a corresponding testbed of the
EMYNOS framework, which was developed and tested by
Barakat et al. [4] and Kumar Subudhi et al. [12].

We aim to enhance the EMYNOS platform by implement-
ing an AI system that accurately recognizes emergencies
and autonomously initiates eCalls while being accountable
and effective. In addition to the automated emergency recog-
nition, we want to provide XAI explanations to the patient
and emergency call taker. These should help the latter better
assess the emergency situation, estimate necessary medical
resources, instruct potentially available first responders, and
even recognize and reject hoax calls.

To realize the automated eCall functionality, we will inte-
grate the ML models and XAI functionality proposed in this
paper into the EMYNOS platform. As depicted in Figure 1,
the Medical Analysis Module (MAM) provides access to the
models and XAI methods. When a user at the Caller Side
receives new ECG readings from connected IoT devices, the
data is forwarded to the MAM. The MAM then analyzes
the ECG, provides a classification score, and delivers XAI
explanations to the patient. If an emergency is detected, an

1H2020 EMYNOS: https://www.emynos.eu/, as of date 27.07.2023

https://www.emynos.eu/
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eCall is automatically initiated, and the sensor data is trans-
mitted to the emergency call taker, who can also utilize the
MAM to obtain relevant explanations. Additionally, we will
grant access to the Enhanced Interpretablity Module, a We-
bApp that offers an interactive GUI interface to enhance the
interpretability of the explanations provided.

2.2 Related Work
Recently, there have been a growing number of studies for
the detection of heart-related diseases from ECG data. The
twomost commonly used open ECG databases are called PTB
[8] and PTB-XL [28]. The two databases are disjoint, with
PTB-XL being larger and with broader annotations. Some of
these works also extend their work from the MI detection
towards explaining their models for increased transparency.
As the PTB-XL dataset is relatively new, there are only a

few studies using it in their work. Hammad et al. [9] uses a
CNN combined with an SVM for the classification of four car-
diovascular pathologies available in the PTB-XL dataset, and
achieved an accuracy of 98.9%. A similar study by Chen et al.
[5] used the PTB-XL dataset for training and validation, but
used a dataset from Chapman university and Shaoxing Peo-
ple’s Hospital [30] for testing. They used a residual network
for MI detection and achieved an AUC of 97.7%, specificity
of 95.1%, and sensitivity of 95.1%. Another study by Martin
et al. [16] preprocessed the signal by using single lead infor-
mation aligned in time, and achieved an accuracy of around
84.1%, by using deep LSTM. On the other hand, Ma et al. [14]
focused on simplifying the model to reduce the prediction
time of MI, and used a convolutional dendrite net, achieving
a decent accuracy of 96.80%. Contrary to all these studies
with time series data as the input data type, Fang et al. [7]
proposed a novel method by generating 3D images with the
12-lead ECG data, and and achieved an accuracy of 97.23%
by training a multi-VGG deep neural network. They also
explained their AI outputs by using Grad-CAM++ on these
images. Anand et al. [1], on the other hand used variations
of Spatio-Temporal CNNs, and used SHAP to explain their
model along with the medically relevant information.
In addition, the studies using the PTB database achieved

even better performance results. Zhang et al. [29] extracted
single heartbeats for MI detection and MI localization, and
achieved an accuracy, sensitivity, and specificity of 99.88%,
99.98% and 99.39% respectively. Rai and Chatterjee [17] and
Han and Shi [10] compared deep learning methods like CNN,
hybrid CNN-LSTM, and ensemble techniques for MI detec-
tion and achieved accuracy as high as 99.8% [17]. In addition
to the CNN architecture, Jahmunah et al. [11] also used LRP
for explanations and Strodthoff and Strodthoff [24] used
Grad-CAM.
A few other studies used ECG-plotted images from the

PTB dataset as input data and used CNN for classification
Makimoto et al. [15], Uchiyama et al. [27]. [15] also used
Grad-CAM for explanations.
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Figure 2. Overview of the methodology pipeline.

3 Methodology for ML-based MI Detection
Figure 2 shows an overview of our approach to obtain and
compare two disparate ML models capable of detecting indi-
cations of MIs in provided ECG input data. As motivated in
Section 1, we compare two models that operate on different
data structures in order to investigate different available XAI
methods with distinct capabilities for both data structures
in future work (see Section 5). As illustrated in Figure 2, the
first investigated model represents a one-dimensional CNN
trained on multivariate ECG time series data. In contrast, the
second model is based on the GoogLeNet [26] and is trained
on images showing the ECG signals. Both approaches obtain
the data from the PTB-XL benchmarking dataset [28]. Before
evaluating and comparing both disparate approaches, we
describe the PTB-XL dataset, the applied data preprocessing,
and both mentioned models in the following sections.

3.1 Data Analysis & Preprocessing
The PTB-XL benchmarking dataset comprises the largest
publicly available collection of ECG data, consisting of 21799
12-lead ECG records of ten seconds from a diverse cohort of
18869 patients [28]. The ECGs are accompanied by diagnos-
tic labels provided by two cardiologists. Each ECG is labelled
with possibly multiple superclasses, including myocardial
infarction (MI), normal ECG (NORM), ST/T change (STTC),
conduction disturbance (CD) and hypertrophy (HYP). There
is also given a likelihood for each label being correct. We only
make use of those ECG records that are labelled with MI or
NORM (and possibly other superclasses) with a probability
of 80% or more. We call this first preprocessing step filtering.
This step is followed by an aggregation of labels into NORM

2544 
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7097 
(74%)

291 
(25%)

896 
(75%)

MI NORM

15264
(52%)

14194 
(48%)

Train set distribution 
a) after filtering b) after balancing & augmentation

Test set distribution 

Figure 3. Class distribution of train and test sets after differ-
ent steps of preprocessing.
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Figure 4. Architecture of the 1D CNN showing convolutional (blue), dropout (yellow), pooling (green) and dense (grey) layers.

and MI as we aim for a model that is capable to distinguish
between these two classes. In the next step, we split the
dataset into training (80%), validation (10%) and test (10%) as
suggested and defined byWagner et al. [28]. As illustrated in
Figure 3, the resulting classes MI and NORM are unbalanced
(1 : 3) in the training set. To address this imbalance issue
and allow the models to learn more of the rare but targeted
MI cases during training, we make use of a sliding window
approach similar to that proposed by Strodthoff et al. [25]. As
can be inferred from Figure 3, we obtain an almost balanced
training set with ECGs of 2.5 seconds length. To be more
precise, we oversample the minority class by selecting three
subsequences of length 2.5s from each ECG with MI for each
subsequence that we take from an ECG classified as NORM.
As we additionally want to augment the whole training set
in order to increase the learning capability of the ML models,
we use two distinct subsequences from each ECG that is
classified as NORM and six overlapping subsequences that
are evenly distributed over the whole ECG sequence from
each MI sample. The resulting data distribution and number
of samples per class before and after preprocessing of the
training set is depicted in Figure 3. As we can also see in this
figure, we do not apply any balancing or augmentation on
the test set as it has to represent the original data distribution
to be expected in operation environments in order to derive
reliable conclusions about the generalizability of the models.
However, we also selected (random) subsequences of 2.5s to
match the expected input dimension implied by the window-
ing approach. In this process, we ensured that no samples
from individual patients were mixed in the individual data
splits to avoid inter-patient learning of the models.

3.2 Approach 1: Using CNNs to analyse ECG signals
In our first approach, we use the preprocessed ECG signals
as input to train a CNN with one-dimensional convolutional
layers operating on the original multivariate time series data.
This CNN is an adapted version of the one proposed by Ham-
mad et al. [9], which they used as a tool for extracting deep
features of ECG signals. The architecture of our adapted
CNN version is illustrated in Figure 4. It consists of four
convolutional layers, two max pooling layers, one global
average pooling layer that is followed by a dense layer and
a probabilistic output given by the sigmoid function. For

all other layers, we use ReLU activations. We incorporated
dropout layers after each of the convolutional layers as a reg-
ularization technique to reduce overfitting [23]. Additionally,
we applied early stopping in order to avoid overfitting. To be
more precise, we monitored the loss on the validation set and
ended training the model after 30 iterations of no decrease.
In order to obtain a model of high performance, we tuned the
hyperparameters kernel sizes, dropout rates, batch size and
learning rate for the Adam optimizer used during training.
We thereby applied grid search resulting in kernel sizes of
7, 5, 5 and 5 for the four convolutional layers, dropout rates
of 0.5, 0.4, 0.3 and 0.2 for the four dropout layers, a batch size
of 64 and a learning rate of 0.001.

3.3 Approach 2: Using GoogLeNet to analyse ECG
images

In this approach, we use images of ECG signals instead of
the raw ECG signals, and use the GoogLeNet [26] for the
classification task. GoogLeNet is a CNN with 22 layers using
repetitive components of multi-sized filters at the same level.
As an input to this model, we use images generated from the
preprocessed data as described in Section 3.1.Thus, we ensure
similar training data for both approaches. As GoogLeNet re-
quires input images of size (224, 224, 3), we resize the images
before feeding them into the network. In addition, as the
classification task is different from the original GoogLeNet
classification, we modified it to be retrained for the MI de-
tection task. We removed the last ’loss-3-classifier’ layer and
added a ’fully-connected layer’, a ’softmax layer’, and a ’clas-
sification layer’ specific to our task. The rest of the network
remained unchanged. We used a stochastic gradient descent
optimizer with a momentum of 0.9 for optimization, with an
initial learning rate of 3 · 10−4 and batch size of 10. To avoid
overfitting, we used the validation set as in approach 1.

4 Results and Discussion
We evaluated our two models on the recommended PTB-XL
test set consisting of 291 MI and 896 NORM samples (see
Figure 3). The results for both proposed models are shown in
Table 1. They are based on a random 2.5s long subsequence
for each of the ECGs from the test set. Figure 5 shows that the
choice of the 2.5s subsequence does not have a great impact
on the performance metrics accuracy, recall and precision.



Exploring CNN and XAI-based approaches for accountable MI detection

Precisely, it depicts statistics of these metrics for both the
models based on the test set. We used sliding windows for
this analysis with a stride of 10 ms for the 1D CNN, and 500
ms for the GoogLeNet due to the computational complexity
for generating images.
As we can deduce from Table 1, the accuracy of the 1D

CNN model is with 96.21% slightly higher than that of the
GoogLeNet, which manifests an accuracy of 95.53%. How-
ever, this metric should be used with caution as the test
set is imbalanced. Therefore, our main focus is on the two
performance metrics precision and recall. On the one hand,
we aim for models with high precision identifying what
proportion of ECGs classified as MI was actually correct.
More specifically, we want the model not causing too many
false alarms when incorporated in the eCall system. On the
other hand, we aim for models with high recall, meaning the
proportion of actual MIs being identified as such should be
high. This is of high importance for our application as every
non-identified MI endangers somebody’s life. Whereas the
precision of the 1D CNN with 91.55% is higher than that
of GoogLeNet with 88.14%, the recall of the GoogLeNet is
higher than that of the 1D CNN with 94.50% and 93.13%,
respectively. For the sake of completeness, we also included
other performance metrics in Table 1. Specificity, for exam-
ple, is often used together with recall (sensitivity) in the
clinical context. Regarding the performance metrics, we con-
clude that the 1D CNN manifests a slightly better trade-off
between precision and recall than the GoogLeNet for the
eCall use case. However, performance is not the only aspect
that we take into account for our application.We additionally
aim for an accountable model providing reasoning behind
its decisions. An outlook on this aspect is given in Section 5.

4.1 Selecting different ECG windows at inference
time

As described above, our proposed models expect ECG inputs
of 2.5s length. However, ECGs with longer sequences are
often available in real-world scenarios. Therefore, longer

Table 1. Performance comparison of the proposed models

Metric 1D CNN
(Approach 1)

GoogLeNet
(Approach 2)

Accuracy 96.21% 95.53%
Precision 91.55% 88.14%
Recall 93.13% 94.50%

Specificity 97.21% 95.87%
AUROC 98.91% 99.09%

TP 271 275
FP 25 37
TN 871 859
FN 20 16

Figure 5. Accuracy, precision and recall for 1D CNN and
GoogLeNet for sliding windows of 2.5 seconds over 10 sec-
onds of ECG data. The boxes represent the 25th to 75th
percentile of the samples, red lines represent the median,
extended black lines represent the minimum and maximum,
and red crosses represent the outliers.

Table 2. Comparison of test performance with different frag-
mentation approaches for the proposed 1D CNN model (A1)
and the GoogLeNet-based model (A2).

Metric Random
window

Average
windows

Max
window

A1 A2 A1 A2 A1 A2

Accuracy (%) 96.08 95.59 96.54 95.87 95.28 93.93
Precision (%) 91.03 88.37 92.23 89.03 85.71 81.19
Recall (%) 93.23 94.46 93.81 94.84 96.91 97.93

TP 271 275 273 276 282 285
FP 27 36 23 34 47 66
TN 869 860 873 862 849 830
FN 20 16 18 15 9 6

ECGs could be fragmented into consecutive 2.5s windows,
on which the MI detection models are applied continuously.
For the presented emergency detection use case, this concept
raises the question of when a fragmented ECG should be
classified as MI and an emergency call should be triggered.
To investigate and clarify this question, we examine and
compare three fragmentation approaches on the PTB-XL test
set. In the first approach, only a single random 2.5s window
is selected from the 10s original ECG, and then used for MI
detection. In the second approach, the ECG data is split into
four consecutive 2.5s windows, and the final classification is
based on averaging the prediction results of the individual
windows. The third approach is similar to the second one,
except that the ECG is classified as MI and an alarm is issued
if at least one window is classified as MI.

Table 2 lists the results for the three discussed fragmenta-
tion approaches for both proposed models. For the first ap-
proach in which a random subwindow is chosen, we provide



the average metrics over all possible selections of windows
as depicted in Figure 5. As we can deduce from Table 2, the
performance metrics accuracy, precision, recall, TP, FP, TN
and FN are all slightly better for the averaging approach
than for the random window approach. However, the mod-
els will be integrated in a time-critical emergency system
and evaluating four sequences instead of one would increase
the classification time. The third approach (max window), in
which the final classification is also based on analysing four
windows, shows a possibility on how to increase the recall
with the cost of decreasing the precision. The accuracy for
this third approach is slightly smaller than that of the other
two approaches. In conclusion, there is a trade-off between
time and performance as well as between recall and precision
that both needs to be taken into account when integrating
the models into the eCall system.

5 Towards accountable ML-based eCalls
For our safety-critical application of automated emergency
detection, the end-to-end accountability of the entire AI-
based system is of utmost importance. Precisely, we want
the ML models to be able to explain their decisions when pre-
dicting emergencies in a way that they are understandable
by the emergency call takers. In our studied exemplary use
case of MI detection, we want to provide visual explanations
highlighting the relevant segments in the ECG signal that
are indicative for a classification as MI. Therefore, we focus
on those XAI methods that return an importance score for
each point in time and each of the 12 leads or for each pixel,
depending on the approach. This importance score repre-
sents the relevance of each input feature for the model’s
decision for detecting MI, allowing to present explanations
as heatmaps superimposing the ECG being explained. In the
following section, we aim to present the initial results and
findings of investigating the application of XAI methods to
the proposed models for realizing the explanations described
above. A complete and systematic study of the models’ ac-
countability is subject to the current research activities of
the authors and will be presented in future work.

5.1 Utilizing XAI methods for time series ECGs
In recent years, various explainable artificial intelligence
methods [21] have been proposed that can be applied to dif-
ferent types of ML models and different types of data. The
PTB-XL dataset that we use is a set of multivariate time
series. However, most research and available XAI methods
have focused on text, image, and tabular data [21]. Although
univariate time series data can be interpreted as tabular data
and, therefore, XAI methods for tabular data can be trans-
ferred to them, this is not straightforward in the case of
multivariate time series data. A dataset of multivariate time
series has three dimensions: the number of time series data,
the number of time steps, and the value at each time step. In

contrast to that, tabular data only has two dimensions. There
is the possibility to reduce one dimension of the multivariate
time series dataset by flattening each time series but this
comes with the cost of losing explicit time dependencies of
features, which is why we decided against this approach. At
this point, we want to remind the reader that this XAI limi-
tation of multivariate time series classifiers is the reason for
presenting two models working on different data structures.

For the proposed 1D CNN model discussed in Section 3.2,
we encountered LRP [2] and SHAP [13] to be applicable to
explain the model’s decisions on the multivariate time series.
Figure 6 illustrates exemplary explanations for an ECG of
one patient for which the 1D CNN model correctly predicted
an MI with a classification score of 99.99%. We scaled each
of the importance scores to be in the range [−1, 1] by divid-
ing with the highest absolute value of all importance scores
per explanation in order to have comparable scores across
XAI methods while keeping the sign. The sign is important
as negative values in LRP denote negative evidence for a
class [2], i.e. evidence for the respective ECG being normal
in our case. The two explanations given in Figure 6 highlight
segments encountered as most relevant regarding the 1D
CNN model’s decision for predicting MI in red colour. As
illustrated, there seems to exist some consistency of red high-
lighted segments across heart beats and some of the leads.
Additionally, some of the 12 leads have been highlighted
more, suggesting to be more relevant for detecting MI.

5.2 Utilizing XAI methods for image ECGs
For the proposed GoogLeNet-based model presented in Sec-
tion 3.3, we use ECG images as input to perform the MI
detection. Thus, this image classifier can potentially exploit
the wide range of available XAI methods for models working
on image data [21]. For the presented model implemented
in Matlab, we found Grad-CAM [22] and LIME [19] as the

Figure 6. Explanations from SHAP (left) and LRP-epsilon
(right) for the output of the 1D CNN (approach 1) on the
same ECG. The horizontal axis represents time in 10ms and
the vertical axis represents voltage in mV. Red represents
positive whereas blue represents negative relevance for MI.
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Figure 7. Explanations from Grad-CAM (left) and LIME
(right) for the output of GoogLeNet (approach 2). The red
colour represents the most relevant parts of the ECG image.

initially most promising approaches. Figure 7 shows the ex-
planations generated by the two XAI methods for the same
patient as used in Figure 6. The GoogLeNet prediction for
this image was MI with a confidence score of 99.61%. The rel-
evance values in the image are scaled as in the first approach.
Since Grad-CAM and LIME had only positive scores, they ap-
pear to be in the range [0, 1], where 0 indicates no influence,
while 1 indicates most relevance towards classifying MI. As
observed in Figure 7, Grad-CAM highlights a larger area
and is not able to highlight specific parts of the image. For
various other ECG images, Grad-CAM was able to provide
more specific areas than in this example. However, LIME
highlights specific leads and segments of the ECG image,
providing more specific parts that may be relevant.

5.3 Outlook: Evaluate model accountability
When comparing the results illustrated in Figures 6 and 7,
we can conclude that the two explanations for the 1D CNN
model’s decision on detecting MI are fine-grained, whereas
those for the GoogLeNet model’s decision are more coarse-
grained. The explanations given for the 1D CNN mark in-
dividual ECG segments as relevant. On the contrary, the
explanations of the GoogLeNet highlight broader segments
or whole leads. However, there also seems to exist some con-
sistency of highlighted segments across these XAI methods.
So far we have shown the capability to provide explana-

tions for each of the models, but a thorough quantitative
and qualitative analysis and comparison of both approaches
and the generated explanations is yet open and currently
conducted by the authors. However, the findings presented
in this section already highlight several research questions
that remain open and will be investigated in future work: 1)
Which of the XAI methods applicable to one model provides
the best explanations? 2) Which of the two proposed mod-
els is more accountable, i.e. provides better explanations? 3)
Which of the models and methods generates stable and con-
sistent explanations? While the first two research questions
describe a qualitative analysis for which domain experts need

to be included, the third question corresponds to a quantita-
tive analysis for which suitable metrics to measure stability
and consistency need to be defined.

6 Conclusion
In this paper, we proposed two disparate ML models capa-
ble of identifying indications for MIs from ECG sensor data
in the context of IoT-enabled emergency communication
systems. While both models reliably detect MIs, we found
that the presented 1D CNN operating on time series data
shows a better trade-off between precision and recall for the
discussed eCall use case than the GoogLeNet-based model
working on plotted ECGs. Furthermore, we analyzed three
ECG fragmentation approaches for consecutively applying
theMI detectionmodels in real-world scenarios. Our findings
indicate that no approach outperforms the others. Instead, a
trade-off between classification time and performance needs
to be found when integrating the models into safety-critical
systems. Finally, we presented the initial results of applying
XAI methods to the proposed models for providing explana-
tions that elucidate their decision-making. These preliminary
experiments suggest that the CNN model’s explanations for
detecting MIs are more fine-grained in comparison to the
GoogLeNet-based model. In future work, we aim to inves-
tigate the last aspect in more detail by analysing how to
approach accountability for the proposed models by improv-
ing their explainability. Precisely, we want to systematically
evaluate the application of XAI methods to the proposed
models by performing quantitative and qualitative analysis
of the provided explanations as described in Section 5.
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