
Edge Chaining Framework for Black Ice Road Fingerprinting
Vittorio Cozzolino

Technical University of Munich
Munich, Germany
cozzolin@tum.de

Aaron Yi Ding
Delft University of Technology

Delft, Netherlands
aaron.ding@tudelft.nl

Jörg Ott
Technical University of Munich

Munich, Germany
ott@tum.de

ABSTRACT
Detecting and reacting efficiently to road condition hazards are
challenging given practical restrictions such as limited data avail-
ability and lack of infrastructure support. In this paper, we present
an edge-cloud chaining solution that bridges the cloud and road
infrastructures to enhance road safety. We exploit the roadside in-
frastructure (e.g., smart lampposts) to form a processing chain at the
edge nodes and transmit the essential context to approaching vehi-
cles providingwhat we refer as road fingerprinting. We approach the
problem from two angles: first we focus on semantically defining
how an execution pipeline spanning edge and cloud is composed,
then we design, implement and evaluate a working prototype based
on our assumptions. In addition, we present experimental insights
and outline open challenges for next steps.

1 INTRODUCTION
The presence of a smart roadside infrastructure in the cities of
tomorrow (e.g. smart lampposts [3]) offers opportunities for build-
ing new applications working with and providing fine-grained, lo-
calised information. Consequently, more detailed and precise maps
of metropolitan areas can be generated to support applications in,
for instance, the health and safety domains. City-wide pollution
fingerprinting can enable pedestrians and cyclists to select less
polluted routes, while infrastructure-supported black ice detection
can allow drivers to predict the presence of patches of black ice
outside their field of view.

Numerous applications fully exploit crowdsourcing to generate
augmented maps which, however, have limited dimensionality in
terms of collected data. In fact, they rely on users’ hand-held de-
vices, which may not be equipped pollution or particulate sensors
or infra-red (IR) thermal cameras, which are fundamental for the
aforementioned functions.

As smart cars become widespread, the availability of sensors
will expand the information domain of crowdsourcing applications;
however, there are multiple limitations. First, data availability: data
collected by car manufacturers is often not publicly available, thus,
creating a disparity in the quality of service offered among providers.
Second, bad weather conditions, limited range of car sensors and
lack of enough reliable data to properly map the road condition can
reduce the effectiveness of crowdsourcing solutions and eventually
provide false predictions putting at serious risk the drivers. This
problem is exacerbated in areas with poor network connectivity
where vehicles are hardly reachable from the cloud and left in the
dark about the presence of road hazards. Section §2 will provide a
more detailed discussion about such issues.

The problem we wish to solve concerns how to provide reliable
information regarding road hazards to vehicles in challenging condi-
tions with the support of a smart roadside infrastructure. Our primary

use case is black ice detection, which we tackle with an edge-cloud
pipelining concept to create on-demand execution pipelines span-
ning edge and cloud nodes. Involved edge nodes (ENs) form execu-
tion chains and follow a specific protocol in order to collaboratively
contribute to the task completion. Assessed road conditions are
then broadcast to approaching vehicles. In this paper, we build
upon our previous groundwork [7], develop a new edge chaining
framework, and contextualize it for the above-mentioned use-case.

The remainder of this paper is structured as follows: framing
the problem (§2), background (§3), edge-cloud pipeline (§4), system
design (§5), implementation (§6), evaluation (§7), conclusion and
future work (§8).

2 FRAMING THE PROBLEM
With the growth in deployed smart devices and the presence of
physical infrastructure in proximity to end-users, there arises the
challenge of constructing a platform that can provide accurate,
reliable road conditions information at scale.

Detecting road conditions and potential hazards is a problem
that has been explored and approached in the literature using dif-
ferent approaches. Both crowdsourcing solutions, where vehicles
exchange collected information to identify bumps [5], and infras-
tructure based solutions as in [13], where IR cameras mounted on
lampposts are used to detect ice formations on the road, have been
explored. Through different approaches and tools, various studies
examining the effectiveness of detecting road conditions have been
conducted [11, 12].

Eriksson et al. [8] proposed pothole patrol (P2), a mobile sensing
application used for detecting and reporting road surface conditions.
In a similar system used in traffic sensing and communication,
Mohan et al. [16] proposed the use of mobile devices connected to
exterior sensors. Mednis et al. [15] improved and extended the P2
system using a customised embedded gadget and with the aid of a
smartphone hardware platform for sensing road surface conditions
[21]. Edge-computing-based approaches have been also explored,
as in [5]. However, their focus is on security implications, while
the focus of this study is to formalize the system requirements and
build a working distributed edge computing platform.

Existing solutions focus on using either crowdsourcing or edge
networks for transferring information. However, the quality of
crowdsourced spatial data is often unreliable [6]. Consequently,
the density of effective data points for estimating road conditions
can be insufficient in low-traffic areas. Moreover, solutions based
on on-board car sensors are also unsatisfactory in circumstances
where road characteristics (e.g. buildings, trees, turns, crossroads)
and adverse weather conditions effectively inhibit the ability to
detect hazards at a distance. To overcome this challenge, we take
advantage of road infrastructure by extending the sensory capacity



v

Edge-cloud pipeline

Road condition sent to 
approaching vehicles

EN connections

Cloud “loopback”

Approaching vehicle has limited 
vision cone, affecting both sensors 
and reaction time. This effect is 
amplified in bad weather condi-
tions or in presence of turns.

Blackice patch

Smart lamppost as EN 
equipped with sensors

Sensing cone

In this above examples, the presence of a turn combined 
with reduced field of view due to trees (e.g., mountain 
road) or buildings negates on-board sensors capability of 
detecting a black ice patch in time for the driver to react.

In this conditions, the presence of a fixed infrastructure 
can be crucial in providing road hazards information.

Vision cone

A

B

C

Edge Node Cloud planner End-user

Figure 1: Black ice road fingerprinting (A); critical scenarios (B, C)

of cars beyond what can be captured by on-board sensors, and use
edge computing as a core technology.

In this paper, first, we tackle the problem of semantically rep-
resenting a distributed task that spans multiple ENs. Then, we
introduce the definition of an edge-cloud pipeline and describe the
process of splitting it into local sequences. Finally, we identify the
required software components and emerging technologies that can
fulfil the desired functions.

3 BACKGROUND
Here, we introduce several concepts and definitions that are used
throughout the remainder of the paper.

Edge node (EN). The definition og this term is quite broad. We
agree with the definition provided in [20], in which edge computing
generally occurs in proximity to datasources. Hence, an EN is a de-
vice very close to the end user, such as a base station, mobile phone
or private PC. Other classifications of ENs extend the definition to
RAN microservers [14]. In this work, we focus on ENs in the range
of micro-servers such as Intel NUC and Dell Optiplex which were
used in our experiments.

Edge network. This is a network of ENs interconnected via a
wired or wireless connexion. The ENs are in physical proximity
to one another, such as lampposts on the side of a road. Detailed
characteristics of an edge network are not described here, as they
are discussed in other papers.

Task and edge function (EF). In this paper, we use the term tas
to refer to an operation to be carried out by the network. At a high
level, a task can be expressed as follows: ’find black ice patches at
road intersection 1A and 3B’. A task can be reduced to an ensemble
of EFs: self-contained, atomic applications in which a small fraction
of the task logic is embedded, but can be executed in a standalone
fashion. A task contains at least one edge function. Distributed
complex event processing [18, 19] is an example of a task composed
of multiple sub-functions. To improve performance and scalability,
these sub-functions are moved closer to the data sources.

Edge-cloud pipeline. This pipelines is a tasks issued by a cloud
provider to edge nodes, and contains information regarding in-
volved nodes, chaining order and data sources. Nodes involved in
the pipeline form execution chains and collaborate to solve the task;
they are selected based on multiple parameters and execute only a
subsection of the entire pipeline. Pipelines can be ephemeral or re-
current, based on the task requirements. More details are provided
in §4.

4 EDGE-CLOUD PIPELINE
In this section, we describe in detail our representation of the edge-
cloud pipeline and its application to our prime use case: blackice
road fingerprinting. Three main elements are involved: the cloud
planner, the edge infrastructure and the vehicles. Due to page limit,
the vehicles are not discussed in details as their role is passive in
relation to our system — they receive the information from the
infrastructure via, for instance, long-range communication radios
such as LoRaWAN [2] or Vehicle Fog Computing [10].

4.1 Cloud planner
Cloud services define the pipeline structure and monitor its execu-
tion. We assume knowledge is available regarding th reachability of
edge devices, their available data and their current load (in terms of
active EFs and pipelines). Based on this assumption, it is possible to
plan a pipeline execution tree based on a set of parameters among
which data locality has a prime role. Once offloaded, the pipeline
can be configured to run independently from the cloud based on
specific policies.

Once the structure of the pipeline is defined, the cloud prepares
a meta-pipeline containing various information about the pipeline
itself, as illustrated in Figure 2. In our use case, the cloud provider
may be a car manufacturer that wishes to offer augmented maps
to its fleet [1] and, thus, exploits edge infrastructure to collect and
analyse road condition data.



Pipeline 1 to N Sequence* 1 to N EF
ID
ISSUER
PRIORITY
DEADLINE
EXECUTION
TYPE
IS_DISTRIBUTED

ID
LENGTH
STATE

TARGET
PREVIOUS
NEXT

NAME
ID
MD5
CONFIG_FILE
MEMORY
ONCRASH
CHAIN_ROLE
EXTRA_PARAMS

ID
TYPE
DATA_PROTOCOL
DS PARAMETERS
URL
TARGET

*sequences are only generated locally by the EN 
and are not explicit in the meta-pipeline file

1

3
2

Sequence order parameters
Execution parameters
Data acquisition parameters

1:
2:
3:

Figure 2: Meta-pipeline

4.2 Edge infrastructure
In relation to our use case, black ice detection requires each node
to locally process thermal images acquired from IR cameras or
similar sensors, identify patches of black ice and send the results
to the following node. As Figure 1 shows, we assume that ENs are
deployed inside smart lampposts that are equipped with an array
of sensors able to detect road conditions.

The edge infrastructure is composed of manifold ENs each ad-
dressable by an unique identifier such as their location (e.g. GPS
coordinates). When a meta-pipeline is offloaded, the involved ENs
parse it and identify which sections has to execute and in which
order relative to the other nodes. Each pipeline is split into sub-
pipelines, which in turn are transformed into sections that can
contain multiple stages, which are eventually, but not immediately,
executable. Pipelines can be sorted by multiple parameters: priority,
expected load and deadline which can alter the execution order.

Once the sub-pipeline execution order is assessed, each EN has
to verify the reachability of the neighbour ENs in the pipeline and
prepare to exchange and process data with them (here we assume
that there are no issues in terms of network reachability).

4.3 Pipelines: flexible chaining at the edge
One concept that requires further explanation is the relationship
between pipeline and sequence. As mentioned above, ENs scan
the meta-pipeline and select the list of EFs to be executed locally.
These EFs can have different roles, such as head, transit and tail.
This classification is necessary because it determines the order in
which the EFs should be chained and executed. The ordering is
based on the identifiers associated with each EF. Identifiers (IDs)
are assigned to pipelines, sequences, EFs and data acquisition rules,
as demonstrated in Figure 2. Head and tail roles always represent
the end of a sequence, while transits are EFs that serve as links
between the head and tail. In other words, a sequence always begins
with a head and ends with a tail; they are not necessarily deployed
on the same EN, and there can be an arbitrary number of transit
instances between the two. Sequence order parameters are used to
correctly unfold the execution. Figure 4 illustrates different pipeline
and sequence structures.

A key property of the pipeline is chaining. ENs create tempo-
rary, dynamic execution chains based on the pipeline topology in
order to form a collaborative network. As data flows from one link
of the chain to the other, computation unfolds and the pipeline
progresses towards the tail EN. In addition, pipelines are not nec-
essarily linear, they can branch and join creating execution trees.
For instance, branching may be required in situation where groups

ORCHESTRATOR

EF MEMORY
MANAGER

EF1 EF2 EF3

PIPELINE
PROCESSOR

NETWORK
MODULEPIPELINE MONITOR

EF MONITORDATA ACQUISITION 
MODULE

HYPERVISOR
INTERFACE

TASK PARSER

OS

HYPERVISOR

EFN

EDGE NODE
Main modules of the frameworkOffloaded EFs

...
Data Distribution

Data Processing
Data Validation

Data Acquisition
EF Workflow

Figure 3: System modules overview

of ENs provide different information to be subsequently merged at
the end of a pipeline.

Each EF has data acquisition rules that can be split into input
and output. The former determines where the data should be re-
trieved, while the latter specify whether the result of the com-
putation should be sent to a remote node to continue along the
pipeline or should be stored locally for future use. Additional details
concerning this process are provided in section §5.

5 SYSTEM DESIGN
In this section, we provide an overview of the system (as presented
in Figure 3) in relation to the discussed use case followed by a
description of the core components necessary for pipelining. To
conclude, we briefly describe the system workflow.

5.1 Overview
In the scenario in which roadside infrastructure is used exclusively
as an adjunct of the cloud, a slow connexion or the lack thereof can
invalidate the purpose of the entire system as follows: information
about the road conditions is slowly retrieved or not retrieved at
all, and vehicles are left without information about potential haz-
ards, which can potentially cost lives. Hence, edge computing has
the critical role of being a reliable, resilient and autonomous
infrastructure that delivers services even when the cloud is un-
reachable.

As vehicle density on side-roads might not be sufficient to map
reliably the road conditions, crowdsourcing in unable tackle this
problem. Available spatial data is very sparse and limited, leading
to incomplete or misleading information distributed to vehicles
driving in low-traffic areas. In terms of on-board car sensors (when
available), there are two key situations in which their effectiveness
is hampered: harsh weather conditions where visibility is heavily
reduced (e.g. blizzard, hailstorm, fog), or the scenarios illustrated
in Figure 1 (B,C). In both cases, the vehicle and driver fields of view
are reduced, limiting the sensor detection capabilities and reaction
time, respectively.

Our framework is designed to solve the aforementioned chal-
lenges, as it provides a framework where multiple cloud services
can share existing infrastructure, which in turn facilitates sched-
uling and handling multiple offloaded tasks. It offers computation



at the ENs, enabling both independence from the cloud in case
connectivity loss and efficient processing and aggregation of infor-
mation based on EFs chaining. In addition, local broadcasting of
road hazards to approaching vehicles affects end-users, who can
benefit from a standalone infrastructure without requiring a mobile
connexion.

5.2 Core components
Our system pivots around the concept of edge offloading [17]: an
emerging paradigm by which computation can be moved from the
cloud towards edge nodes in order to provide multiple benefits.
To differentiate from similar solutions, we design our system as
a collaborative framework where multiple ENs can be chained to
execute different tasks. In order to support andmanage the offloaded
EFs, we developed a set of modules residing and constantly running
directly on each EN.

Orchestrator. It’s the core and entry point of our system, and it
functions as both a coordinator and interface with the outside world.
A REST interface is employed to interact with it. When one or more
EFs are offloaded as part of a pipeline, the orchestrator handles the
calling of the required modules to philtre, order and execute the
EFs. Both single execution and recurrent pipelines are supported.
For resiliency purposes, checkpoints of the pipeline status plus EFs
intermediate results are stored in a local database.

Edge function. The EFs are virtual instances moved from the
cloud to edge devices as part of the pipeline. They are composed of
four parts: data acquisition, validation, processing and distribution.
During the first phase, an EF awaits the necessary data from the
orchestrator (intra-node communication). Next, it proceeds to the
validation phase, in which received data is checked for errors in
case of faulty transmission, eventually requesting a re-transmission.
The data processing phase contains the developer code and is the
core of the EF. By customising this part of the EF, it is possible
to execute any computation inside the EF, granted that eventual
external dependencies and libraries have been handled. Finally, the
distribution phase contains rules that specify whether outputted
data should be dumped to the host or sent to the next EF in the
local sequence.

Intra-node and inter-node communication. Based on the
pipeline structure, data can be exchanged in two ways. Intra-node
communication occurs when the transfer involves two co-located
EFs or an EF and the orchestrator. In contrast, inter-node communi-
cation occurs when the transfer takes place between two EFs that
are not co-located. For the former, a set of parameters is provided for
identifying the source and destination addresses of shared memory
pages blocks used to transfer the data. When two co-located EFs
are involved, the transfer is performed automatically and requires
no involvement from the host modules. In other cases, the host
memory manager module has the task of allocating, deallocating
and cleaning up the memory pages that are continuously used to
communicate with each EF. EFs are unable to fetch data from a
local or remote source; they exist in a completely sealed environ-
ment. Hence, the host framework must also handle the collection
of the required data from the data source specified in the respective
meta-pipeline section.

Network module. This module enables the communication be-
tween non-co-located ENs. It has two groups of queues containing
data structures called bundles, which contain a set of parameters
used to unequivocally identify a pair of producer and consumer
ENs. A combination of IDs extracted from the meta-pipeline is used
for this purpose. The bundles in the inbound queue are stored until
consumed by one or more local EFs which remain in a waiting state
until the specific data is available. The outbound queue contains
the bundles that are ready to be forwarded to the next EN in the
pipeline. The outbound queue is also necessary in case of failures
in some stages of the pipeline; data bundles are in fact stored until
the malfunctioning nodes are prepared to continue. For additional
resiliency, the bundles are also stored inside a database to allow hot
restarts of the system in case of local failure.

5.3 Workflow
The cloud service sends the generated pipeline to each selected EN.
The orchestrator extrapolates relevant information from the meta-
pipeline file with the task parser module. Next, the pipeline processor
generates the local sequences and boot-up the required EFs while
the pipeline and the EF monitor supervise the status of the respective
components. Depending on the data provenance, either the data
acquisition module or the network module prepare a data bundle
subsequently passed to the EF memory manager. As the data starts
flowing, the computation takes place with EFs being allocated and
deallocated following the prescribed order. Once the local sequence
is complete, collected data is either sent to the approaching vehicles,
in case we reached the end of the pipeline, or sent to the next EN.

6 IMPLEMENTATION
Our platform was developed as a unikernel-based system running
on top of the Xen hypervisor (stock version). We exploited virtuali-
sation for multiple reasons to hide hardware discrepancies between
off-the-shelf devices, achieve fine-grained control over running
VMs, obtain stronger isolation and maintain compatibility with
existing cloud computing platforms. We considered Xen [4] to be
the most suitable hypervisor for our implementation as it directly
supports MirageOS [9] — the unikernel of choice for our implemen-
tation. We opted for this specific technology, since one of our goals
was to offload compact, ready to launch, small virtual instances,
embedding only the required code; unikernels are the perfect fit
for this scenario.

Three languages were used to implement the entire system: C for
the EF memory module (kernel module), Python for the majority of
the core modules and OCaml for the EF code (MirageOS). Existing
MiniOS and MirageOS libraries were modified and extended for
compatibility with our system.

7 EVALUATION
We profiled our system under different loads, devices and pipeline
topologies, as shown in Figure 4. The basic case A represent black
ice detection done by a pipeline involving only two lampposts, the
results reflect the processing load of the edge computing nodes.
Other cases grow in complexity and allow to profile our system
under different configurations. Each pipeline begins and ends with
a red and green block, respectively. Yellow blocks represent transit



NUC 1

2

SRV1

B

NUC 1

3

OPX

E,

SRV1 2

FA B C D

NUC 1

4

OPX

E,

SRV1 2

LA B C D

SRV23

F G JH I K

NUC
1a OPX

,

SRV1
2a

DA

SRV2

AB

B

1b

3a

2b

Case
A

Case
B

Case
D

Case
C

Head EF
Transit EF
Tail EF

Inter-node transmission

, CA

CC

Sequence 
...
...

Pipeline block

Figure 4: Pipeline topologies

EFs, which can be found in the middle of the chain. A pipeline
block is delimited by curly braces and contains sequence blocks
delimited by angular braces. A block is an EF processing images or
other sensor data locally collected by the lamppost. Case D has two
pipelines delimited by curly brace blocks. Each node executes only
the blocks assigned to it, which are expected to be executed in a
specific order (represented here with a character in each block).

Different devices were used to understand the performance gap
between the edge and cloud. In our tests, the edge devices were
comparable to micro-servers rather than base stations. The nodes
used in our tests were an Intel NUC (NUC), Dell Optiplex (OPX)
and two high-end Dell PowerEdge 730 servers (SRV1, SRV2), all
connected to the same LAN network.

Table 1: Boot-up time for the EF unikernel on each device

NUC OPX SRV1 SRV2
46±15 ms 30±13.2 ms 25±7.4 ms 29±11.5 ms

We focussed on measuring the following parameters: intra-node
data transfer overhead, pure computation time and pipeline com-
pletion time, as shown in Figure 5, 6 and 7 respectively. To this end,
we baked a MirageOS unikernel supporting basic image processing
operations such as colour normalization and continuously passed to
it the same image with a size of approximately 250KB. Additionally,
in our pipeline the nodes exchanged a complete post-processed
image instead of a single value, as we expect in the case of black
ice fingerprinting where a true/false is sufficient to at least com-
municate the presence of hazards. The average inter-node network
transmission time is also specified for completeness: 20±0.039 ms.

In Figure 6, a minimal difference in performance can be seen
between cloud (server) and edge devices. Thus, we can assert that
there is an effective profit margin in offloading computation as the
potential loss in computational speed is countered by a reduced
upload time. In the case of black ice detection, it would be necessary
to upload images from each lamppost to the cloud, process them and
then send results to cars on a specific road. This would eventually
increase the round-trip time and become unfeasible under in poor
network connectivity situations.

Figure 5 illustrates the overhead created by transferring data be-
tween the host machine and guest unikernels before the processing
phase. Both read and write operations are very fast, on the order
of hundreds of microseconds. Read operations, in which memory
pages populated with processed data are mapped back to the host,
are much slower. This results from different code used for the two

NUC OPX SRV1 SRV2
Device

0

500

1000

1500

Ti
m

e 
(u

s)

Read from EF
Write to EF
STD range

Figure 5: Intra-node transfer time (3000 data points evenly
split between read/write per node)

NUC OPX SRV1 SRV2
Device

0.01

0.015

0.02

0.025

0.03

0.035

Ti
m

e 
(s

)

Figure 6: EF processing time (500 data points per node)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Case A(3 EF, 2 EN)
Case B(6 EF, 3 EN)
Case C(12 EF, 4 EN)
Case D(7 EF, 3 EN)

Figure 7: Pipeline execution time ECDF (100 iterations per
topology)

operations; writing is more efficient as we can allocate blocks of
free memory pages directly, whereas the read operation requires
proceeding page by page. However, even in the average worst case,
reading data is in the range of 1ms. Thus, the memory module
design has very low overhead on the overall system performance.

Figure 7 displays the ECDF of the edge-cloud pipeline execu-
tion time for the cases presented in Figure 4. Cases A to C repre-
sent single-pipeline, non-branching scenarios with an increasing



number of ENs and EFs. Case D represents the performance for
a branched multi-pipeline scenario. The pipeline execution time
includes the computational and memory overhead time in addition
to the network inter-node transfer time and the unikernel boot-up
time, as depicted in Table 1.

Our first insight into the results is the pipeline execution time
grows linearly with the number of EFs. Even though they are not
directly comparable, the first three topologies differ only in number
of EFs and nodes, while the pipeline workflow remains roughly
unchanged. We note that hardware differences do not play a major
role, as performances is comparable. In each case, we double the
number of EFs and add only one EN. By adding more nodes we
amortise the overall completion time, thus, reducing the slope of
the linear growth. This is critical in long pipelines, where finding
the proper ratio of EF to EN has a large effect. Using our framework,
to properly scale-up in terms of edge functions and nodes, different
topologies can be tested to find the one with superior performance.
In our scenario, EFs are expected to be quasi-uniformly distributed
across the roadside equipment involved in the computation.

Case D is the sole case involving multiple pipelines. Rather than
evaluation performance, the test serves as an example of the po-
tential of our framework to run branching pipelines. The examples
are situations where the set of information collectible by different
EN is not uniform (e.g. smart lampposts equipped with different
sensors). Hence, it is necessary to merge data collected from dif-
ferent branches of the pipeline to terminate the computation. In
comparison to case B, whose computational load is the closest in
terms number of EFs, we notice that there is a cost to running
multiple parallel pipelines; with one additional EN, the results are
only approximately 10% better than for the single pipeline case.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed a distributed edge computing framework
to improve current solutions to road hazard detection. Our attention
was focused on black ice detection under adverse road conditions.
The logic, design and implementation of our system were described
in relation to with the analysed use case scenario. We discussed
the advantages of our approach in comparison to solutions based
on crowdsourcing, cloud computing and on-board car sensors. Our
current evaluation has not yet demonstrated the full potential of our
system, as the thermal image processing necessary for detecting
patches of black ice was not embedded in the tested EFs. Hence,
in future work we intend to address this issue by integrating a
state-of-the-art machine-learning black ice detection model into
our system.

To strengthen and expand the capability of our framework, we
plan on offloading non-virtualised EF. Unikernels do not actually re-
quire a virtual hardware abstraction; they can achieve similar levels
of isolation when running as processes by taking advantage of exist-
ing kernel system call whitelisting mechanisms as demonstrated in
[22]. This has the potential to make our system compatible with a
larger range of devices and enable a much simpler integration of ex-
isting tools into our platform. An alternative option is to modify our
system to be compatible with a Tier-2 hypervisor such as KVM. In
fact, this would allow us to compare our system with other similar
frameworks for serverless computing, such as Amazon Firecracker.

REFERENCES
[1] 2017. BMW Here HD Maps. https://

www.forbes.com/sites/samabuelsamid/2017/02/21/
bmw-here-and-mobileye-team-up-to-crowd-source-hd-maps-for-self-driving.
[Online; accessed 08-January-2019].

[2] 2018. LoRaWAN. https://lora-alliance.org/sites/default/files/2018-04/
what-is-lorawan.pdf. [Online; accessed 08-January-2019].

[3] 2018. Munich’s Smart Lamp Posts Shine. https://www.smarter-together.eu/news/
munichs-smart-lamp-posts-shine. [Online; accessed 07-January-2019].

[4] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,
Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen and the Art of
Virtualization. SIGOPS Oper. Syst. Rev. 37, 5 (Oct. 2003), 164–177. https://doi.org/
10.1145/1165389.945462

[5] Sultan Basudan, Xiaodong Lin, and Karthik Sankaranarayanan. 2017. A privacy-
preserving vehicular crowdsensing-based road surface condition monitoring
system using fog computing. IEEE Internet of Things Journal 4, 3 (2017), 772–782.

[6] Alexis Comber, Linda See, Steffen Fritz, Marijn Van der Velde, Christoph Perger,
and Giles Foody. 2013. Using control data to determine the reliability of volun-
teered geographic information about land cover. International Journal of Applied
Earth Observation and Geoinformation 23 (2013), 37–48.

[7] Vittorio Cozzolino, Aaron Yi Ding, and Jörg Ott. 2017. Fades: Fine-grained
edge offloading with unikernels. In Proceedings of the Workshop on Hot Topics in
Container Networking and Networked Systems. ACM, 36–41.

[8] Jakob Eriksson, Lewis Girod, Bret Hull, Ryan Newton, Samuel Madden, and Hari
Balakrishnan. 2008. The pothole patrol: using a mobile sensor network for road
surface monitoring. In Proceedings of the 6th international conference on Mobile
systems, applications, and services. ACM, 29–39.

[9] Madhavapeddy et al. 2013. Unikernels: Library operating systems for the cloud.
In ACM SIGPLAN Notices, Vol. 48. ACM.

[10] Xueshi Hou, Yong Li, Min Chen, Di Wu, Depeng Jin, and Sheng Chen. 2016.
Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE
Transactions on Vehicular Technology 65, 6 (2016), 3860–3873.

[11] Yoichiro Iwasaki, Masato Misumi, and Toshiyuki Nakamiya. 2013. Robust vehicle
detection under various environmental conditions using an infrared thermal
camera and its application to road traffic flow monitoring. Sensors 13, 6 (2013),
7756–7773.

[12] Maria Jokela, Matti Kutila, and Long Le. 2009. Road condition monitoring system
based on a stereo camera. In Intelligent Computer Communication and Processing,
2009. ICCP 2009. IEEE 5th International Conference on. IEEE, 423–428.

[13] M Kutila, M Jokela, J Burgoa, A Barsi, T Lovas, and S Zangherati. 2008. Optical
roadstate monitoring for infrastructure-side co-operative traffic safety systems.
In Intelligent Vehicles Symposium, 2008 IEEE. IEEE, 620–625.

[14] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief.
2017. A survey on mobile edge computing: The communication perspective. IEEE
Communications Surveys & Tutorials 19, 4 (2017), 2322–2358.

[15] Artis Mednis, Atis Elsts, and Leo Selavo. 2012. Embedded solution for road
condition monitoring using vehicular sensor networks. In the 6th IEEE Interna-
tional Conference on Application of Information and Communication Technologies
(AICT’12). 1–5.

[16] Prashanth Mohan, Venkata N Padmanabhan, and Ramachandran Ramjee. 2008.
Nericell: rich monitoring of road and traffic conditions using mobile smartphones.
In Proceedings of the 6th ACM conference on Embedded network sensor systems.
ACM, 323–336.

[17] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar, and J. Ott. 2018. Consolidate IoT
Edge Computing with Lightweight Virtualization. IEEE Network 32, 1 (Jan 2018),
102–111. https://doi.org/10.1109/MNET.2018.1700175

[18] Omran Saleh and Kai-Uwe Sattler. 2013. Distributed complex event processing in
sensor networks. InMobile Data Management (MDM), 2013 IEEE 14th International
Conference on, Vol. 2. IEEE, 23–26.

[19] Nicholas Poul Schultz-Møller, Matteo Migliavacca, and Peter Pietzuch. 2009.
Distributed Complex Event Processing with Query Rewriting. In Proceedings
of the Third ACM International Conference on Distributed Event-Based Systems
(DEBS ’09). ACM, New York, NY, USA, Article 4, 12 pages. https://doi.org/10.
1145/1619258.1619264

[20] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646.

[21] Girts Strazdins, Artis Mednis, Georgijs Kanonirs, Reinholds Zviedris, and Leo
Selavo. 2011. Towards vehicular sensor networks with android smartphones for
road surface monitoring. In 2nd International Workshop on Networks of Cooperat-
ing Objects (CONET’11), Electronic Proceedings of CPS Week, Vol. 11. 2015.

[22] Dan Williams, Ricardo Koller, Martin Lucina, and Nikhil Prakash. 2018. Uniker-
nels As Processes. In Proceedings of the ACM Symposium on Cloud Computing
(SoCC ’18). ACM, New York, NY, USA, 199–211. https://doi.org/10.1145/3267809.
3267845


