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Abstract—Connected vehicular services depend heavily on
communication as they frequently transmit data and AI mod-
els/weights within the vehicular ecosystem. Energy efficiency in
vehicles is crucial to keep up with the fast-growing demand
for vehicular data processing and communication. To tackle
this rising challenge, we explore approximation and edge AI
techniques for achieving energy efficiency for vehicular services.
Focusing on data-intensive vehicular services, we present an
experimental case study on the high-definition (HD) map using
the model partition approach. Our study compares the AI model
energy consumption using multiple approximation ratios over
embedded edge devices. Based on experimental insights, we
further discuss an envisioned approximate Edge AI pipeline for
developing and deploying energy-efficient vehicular services.

Index Terms—3D maps, Approximation, Data Compression,
Energy Efficiency, Edge AI, HD map, Model compression

I. INTRODUCTION

Connected autonomous vehicles rely on sensory tech-
nologies and computational complex algorithms to process
large amounts of data. Usual approaches include supervised,
unsupervised and semi-supervised learning [16]. Embedded
deployment of collision warning systems, object detection
and segmentation have been presented in recent years [10],
[11]. However, the implemented AI models are dense in size
and consist of millions of parameters, thus requiring heavy
processing units for real-time processing, which makes these
models high resource and energy-consuming. The requirement
of high-performance computational resources and onboard en-
ergy consumption will increase when applications and services
such as SLAM, path planning and vehicular communication
are deployed together [20]. At present, these applications
have been proposed to be deployed by processing data at the
vehicle onboard computing unit using CNN/DNN models and
offloading onboard memory in a planned interval [15].

Analytic studies performed on energy consumption for fully
connected autonomous vehicles suggest that overall energy
consumption from the vehicular ecosystem can be divided
into three categories: 1) Onboard energy consumption (sensors
and computing devices). 2) Energy consumption from com-
munication and networking. 3) Energy consumption from the
infrastructure sensors, backend units such as Edge-servers and
the central data-server maintaining legacy data/models [13],
[18]. With the current practices, energy consumption on an
autonomous vehicle is around 550-750 Wh/100 km of driving,
and the predicted energy consumption, by considering com-

munication between vehicles and computation at the backened
units is more than 2500 Wh/100 km of driving. The increase
in data amount from the sensors, also the computation and
communication required by data-intensive vehicular services
are contributing to the increase in high power consumption. To
efficiently and economically deploy future connected vehicular
services and use cases [15], this rising computational and
energy challenge demands an effective design that can enable
energy-aware mechanisms for connected vehicular applica-
tions. Popular connected vehicular services and future use
cases include audio-video streaming, HD map, traffic moni-
toring and traffic optimization [1]. Some use-case (e.g. traffic
monitoring) may require sharing of onboard processed data or
model weights from the vehicles, cloud or the data-server (an
illustration of connected vehicle ecosystem is shown in Figure
1). Solutions involving edge devices and computing have been
proposed [1], [15] by using the connected vehicular ecosystem
and by bringing inference to the edge [1]. Distributed machine
learning approaches using edge computing and intelligence
have also been proposed to tackle the computation on resource-
constrained embedded/edge devices [21]. However, the consid-
eration should be also given to manage the high volume data
and optimized deployment of AI models through approximate
techniques resulting in onboard energy-efficient approaches.
The contributions of this paper are as follows:

• We investigate the trade-off of approximation for HD
map application and share experimental insights on the
accuracy impact for the DNN model.

• We further implement DNN model partition and analyze
energy measurements on embedded/edge devices using
vehicular dataset and propose an envisioned approximate
Edge-AI pipeline for energy-efficient vehicular services.

II. BACKGROUND

Maps have been regularly used by the automotive industry,
to assist the driver navigate from source to destination. In
today’s vehicle, online mapping services are being used, and
are delivered using geographic information system through
internet. In autonomous vehicle, this trend will continue in
the form of High-definition map, which will be constructed
using the automotive sensors such as cameras and lidar [23].
Several techniques of HD map creation, update and change
detection have been proposed in the last two years.



Fig. 1. Future vehicular ecosystem consisting of vehicle, edge and cloud.

Approximate techniques have been implemented on soft-
ware, hardware and architecture. An approximate operation
establishes a trade-off between performance parameters to
achieve favourable gains. The following subsection discusses
the fundamentals of HD map and approximate techniques.

A. HD map

It contains street information in 3d scenarios, overlaid with
various information such as traffic signs, speed limits, road-
side information, and lane markings, with high precision that
allows the vehicle to achieve precise localization. Because
of their semantic nature, HD or 3D maps have often been
categorized as “Mobility as a Service”. Different HD or
3D map versions have been released in the last few years
[23]. These maps contain geometric and semantic information
from the vehicles surrounding sensed using LiDar, camera,
GPS, and IMU, which is further labelled for map creation
and development using AI algorithms. Researchers have also
proposed aggregating data from several connected cars to
construct HD maps in highway driving or special use-cases
such as platooning. Future connected and automated vehicles
will need precise localization abilities to place themselves
into the readily mapped vehicular environment and to localize
themselves beyond-line-of-sight [3]. It is not a significant
concern if the vehicle is not precisely localized in the current
online maps or if the map is not highly accurate or updated
as humans still control the vehicle. However, future connected
autonomous vehicles should be precisely mapped within the
environment using highly accurate and updated maps. It is also
important to note that an increasing number of connected au-
tonomous vehicles generates high-volume data, which should
be processed onboard and exchanged with the other vehicles
and devices within the vehicular ecosystem. Therefore, there is
a need to develop data processing pipelines and energy-aware
mechanisms that can efficiently handle the large volume of
data and vehicular services such as HD maps [3], [15].

Highly Dynamic
Layer

Transient Dynamic
Layer
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Fig. 2. HD map Layer representation in vehicular ecosystem

Definitions of HD maps may vary depending upon the
organization and type of data and information used for the
creation and annotation of HD map could be different as
well, as the organization has different data collection strategies
based on sensor platforms. The automotive edge computing
consortium has also described the HD map’s operational
behaviour for future connected vehicles and associated data
and network traffic based on current sensors data-rate [3].

1) High Definition Map Application: At present, there is
no particular standard for the data and information that should
be stored within the HD maps. The most complete definition
based on multiple use-cases is provided by automotive edge
computing consortium (AECC). The AECC version of HD
map [3], consists of static and dynamic information, that is
classified into four layers based on the time intervals (Figure
2). The layer map is inspired from the existing concept of
a Local Dynamic Map, which is standardized by European
Telecommunications Standards Institute (ETSI). Layers infor-
mation in the map are as follows:

Fig. 3. DNN architecture used for Semantic Map

Permanent Static Layer: consists of information that can
change within the interval of one day or longer. It can consist
of information from traffic lanes, traffic signals, buildings and
the 3D scenario of the road. The permanent static layer can
be described as a static map. In Transient Static Layer,
change may occur within a few to several hours. As shown
in Figure 2, it consists of information on road construction,
accidents and snowfall. The Transient Dynamic Layer, see



changes in the information very frequently. The change may
occur at an interval of a few minutes, which can be because
of local weather, such as heavy rain, storm road obstacles
and unexpected objects. Highly Dynamic Layer contains
information within the interval of few minutes to several
seconds. The highly dynamic layer can help localize vehicles
precisely. It includes the position of moving objects such as
other vehicles, bicycles, motors, and pedestrians. Information
that requires frequent updates within a second interval in an
HD map has been excluded in this section.

B. Approximate Techniques

Two systems or models can be called approximate versions
of each other if they can be replaced in error-tolerable ap-
plications using approximate operations. An approximation is
generally performed to achieve favourable gains in one of
the performance parameters by trading the other. Techniques
such as model compression and data compression have been
implemented to allow fast/real-time inference on resource-
constrained devices. Popular compression techniques proposed
for vehicular services are pruning, low-rank approximation,
quantization, knowledge-distillation, and sketching.

Low-rank Approximation, have been used to compress
neural networks used for object detection tasks. Factoriza-
tion [17], and decomposition [7] of neural networks filters
and layers have helped reduce the parameters from the NN.
The popular approaches include singular value decomposition
[7], [8], Tucker decomposition [12], and canonical polyadic
decomposition [2]. The decomposition approach is applied to
the parameters for the overall dimension reduction by targeting
a channel through decomposing the relevant filter. Similarly,
Pruning has been used to reduce the overall number of
parameters in two forms: removal of weights [14] and removal
of neurons [26]. Removal of weights from NN maintains
benchmark accuracy as only those weights are removed, which
have a magnitude close to zero. Idea of Quantization is
directly inspired by the human nervous system, where the
information is stored in a discrete or detached manner [19].
Currently practised forms of quantization include uniform and
non-uniform, static and dynamic, and granular (layer, group,
and channel). For vehicular applications, NN quantization can
be implemented while training a model or during inference
(post-training). In the uniform quantization approach [4], [6],
the quantized values are uniformly distributed over the space
using a linear approach, while in the non-uniform quantization,
the quantized values are non-uniformly distributed using the
logarithmic or exponential approach. Non-uniform quantiza-
tion of DNN based on interval learning is proposed in [9].

C. Model Partition

To tackle the computing and resource challenges, a large
DNN model can be partitioned into smaller models and
distributed to embedded/edge devices for inference [1]. Model
partition approaches are generally inspired by split com-
puting which is based on resource allocation schemes. In
these cases an algorithm is used to calculate the computing

resources available at the participating devices [21]. Based
on the available computing resources, a large DNN model
can be split into smaller forms for collaborative training and
inference. Each split or partitioned form of the model includes
model parameters and weights, which perform the processing
individually and transmit the calculated weights to the central
device for overall convergence [21].

Fig. 4. HD map architecture for vehicular applications

III. METHOD

This section discusses the model approximation approach
for a DNN model. The approximation discussed in this paper
specifically covers the convolutional layer in a CNN. The
motivation to choose convolutional layers is because of their
compute-intensive nature. This discussion is followed by the
model partition approach used for the HD Map model.

A. Model Approximation

The semantic model used in this paper is based on BiSeNet
architecture [25] first proposed in 2018 for performing real-
time segmentation on images. This architecture uses two
blocks: Spatial and Context. The Spatial block consists of
convolution, batch normalization, and the ReLU layer. The
purpose of the Spatial block is to store the high-quality features
and spatial information from the input and preserve the output
for feature-based fusion with the output of the Context block.
In semantic tasks, the receptive field incorporates features into
convolutional networks. The Context block is responsible for
providing a receptive field in BiSeNet architecture. It consists
of average pooling, convolution, ReLU, Sigmoid block, and a
global average pooling, thus providing a maximum receptive
field for features and lightweight architecture. The computa-
tion cost of tasks is tackled using a refinement module, which
is responsible for refining the feature of an input image at
each stage. This is implemented using average pooling and
vector maps to store the learned feature. This can be further
easily integrated for feature-based fusion without any up-
sampling process, thus requiring less computation. High-level
representation is shown in Figure 3.

Since the development in the area of separable convolution,
depth-wise convolution, and depth-wise separable convolution,
implementation of DNN models on the resource-constrained
embedded device has been very popular [14]. These imple-
mentations have enabled complex task deployment in an op-
timized condition. An efficient model/architecture to perform
semantic mapping in an autonomous vehicle is BiSeNet [5],
which is a comparatively lightweight architecture and is used
for real-time applications. The layers of BiSeNet architecture



are shown in Figure 3. In this paper, approximate opera-
tion/functions have been implemented on the convolution layer
of architecture to further approximate/compress the baseline
architecture. As defined in [24], the relative error between
two systems (original and approximated) can be used as a
measure of the difference between them. For a convolution
layer, the relative error between original(fx) and approximated
system/model (gx) can be calculated as:

E(g, f) =
∑
n

∣∣∣∣g[x]− f [x]

f [x]

∣∣∣∣ (1)

Since the architecture consists of arbitrary layers of convo-
lutional filters, the above-mentioned relative error should be
considered along with the probability distribution functions on
the inputs. Therefore, the above equation can be revised as:

E(g, f) =

∫
ϵ

∫
η

∣∣∣∣F (ϵ, η)−G(ϵ, η)

F (ϵ, η)

∣∣∣∣ .Px(ϵ)Pw(η)d(ϵ)d(η)

(2)
Based on the above equation, Px(x) and Pw(w) are as-

sumed as probability density function of x and w. The
principle behind successfully implementing approximation is
to minimize the E(g, f). One of the basic operations used
in the architecture is convolution, and the convolution of an
image can be explained as Z = X ⊛W [11]. Here, X is an
image, and W is the kernel. Z can be further calculated as:

zm,n =

kh∑
i=1

kw∑
j=1

xm+i,n+j .wi,j (3)

Here, (m,n) are the pixel coordinates of an image, and kh,
kw, is the corresponding height and width of the kernel/filter
used. As it can be seen from the formula, the procedure
includes multiplication. A form of approximation for convo-
lution by [24], has been described as:

zm,n≈
kh∑
i=1

kw∑
j=1

µ|w|.min(xm+i,n+j , ŵi,j)(4)

Here, µ|w| is the expected value of |w| from equation
3. This approximate function has been implemented for the
convolution operation. Implementing approximation on the
convolution layer is because of its property to occupy maxi-
mum computation time during inference. Table 1 corresponds
to the approximate ratio of the baseline architecture and the
performance metrics. Approximation in the form of ratio has
been implemented, starting from 10% up to 45%. Respective
model size in megabytes is also shown in the table. The
training process consists of forward propagation, which also
includes an approximate function for convolution as shown in
equation 4, backward propagation, and updating the parame-
ters with the learning rate. In this case, adam update rule and
learning rate of 0.001 is used.

TABLE I
PERFORMANCE OF DNN MODEL WITH DIFFERENT APPROXIMATE RATIO.

FIRST ROW IS BASELINE ARCHITECTURE, AND FOLLOWING ROWS ARE
WITH APPROXIMATE PERCENTAGE OF THE BASELINE (FOR EXAMPLE:

APPROX-10 IS 10% (SIZE OF BASELINE.)

Approximate Ratio/Per Size (MB) Recall Accuracy IoU
Baseline 134.7 85.27 88.05 0.86
Approx-10 120.6 82.71 84.58 0.85
Approx-20 107.1 78.14 77.03 0.79
Approx-25 100.3 71.04 72.22 0.73
Approx-35 86.8 64.51 65.09 0.61
Approx-45 73.2 55.68 53.66 0.57

B. Model Partition

To partition or split the model for vision-based applications,
it is important to account for parallelization. The operation in
a deep neural network can be described as the calculation
of output tensors. As the input and output tensor consists
of several dimensions, the partition of the tensor can be
used to parallelize this operation. In the case of the DNN
model consisting of convolutional operations which basically
computes feature/activation maps by calculating the channel,
height and width of given input. Partitioning this three outputs
can help to execute the operation in a parallel manner and
further results into a partitioned model.

Model Training: When the baseline model is trained with
a feature-rich dataset such as Argoverse [22], the output
model file is approximately 134.7MB, as shown in Table 1.
Deployment of such a model on resource-constrained devices
brings several computing challenges. Five versions of the
baseline architecture were trained on the PyTorch framework
in high-performance computer clusters using the approximate
operation on the convolution layer. Model performance param-
eters such as recall, accuracy, and intersection-over-union were
computed during training and validation. On the validation set
for semantic vector maps, the baseline implementation resulted
in an accuracy of 88.05, with a recall score of 85.27 and IoU
of 0.86. Further, an approximation of 10% is implemented
on the baseline model, which resulted in the model size of
120.6 MB with recall, accuracy, IoU of 82.71, 84.58, and 0.85,
respectively. An approximation of 25 and 35 percent from
the baseline can be exploited to develop applications using
balanced trade-offs (energy and accuracy) for applications that
can tolerate degradation in performance. For the experiments,
Argoverse dataset is used for training, and testing [22]. It is
very large and includes 200 test scenarios. Therefore, a split
approach is used to train and test the model.

IV. EXPERIMENTS AND RESULTS

This section discusses model deployment on Nvidia Jetson-
Nano and energy measurement with the monsoon high
voltage power monitor using data compression algorithms.
Jetson-Nano performs in memory/compute-constrained set-
tings, making it ideal for testing model/architecture designed
for resource-constrained embedded devices.



Fig. 5. Energy measurement on HD map DNN model (Approx-35 mentioned in Table 1), Figure (a) shows idle state of the device with default applications
active, Figure (b) shows DNN deployment without data compression and Figure (c) shows measurement with 30 % compression on data

Jetson Nano: Python and Pytorch framework is used to
deploy the DNN model in the pre-built Linux-OS provided by
Nvidia. API provided by Argo is further integrated within the
framework for easy data access and visualization.

HV Power Monitor: It is an energy measurement device
from Monsoon solutions used for voltage and current mea-
surements on embedded and computing devices. For the ex-
periments, the monsoon device is controlled using raspberry-
pi (python + monsoon HV Power monitor API) to provide
flexibility and automate measurements.

To test energy consumption of the AI model for a semantic
map application, the Approx-35 model mentioned in Table 1
is used. During the measurements, current values are recorded
against voltage and time (as shown in Figure 5). Figure 5a)
shows measurements on the jetson-nano device in an idle state,
with pre-built applications (background apps) and a connected
graphic port. The current measure for this default setting is
between 350-380 mA. Figure 5a) shows the measurement
recording for 100 seconds. The Approx-35 model is used
with the Argo validation set for the second scenario. Since
the validation set is large, the measurements are captured
for around 2 hours, and the current readings are recorded.
As mentioned in the dataset description, depending upon the
size of the validation set, the current measurements were in
the range of 1820-2400 mA. In the third scenario, a data
compression approach is implemented on the test data before
it is passed to the DNN model for validation. Figure 5c) shows
the current readings for this scenario, which is between 1600-
1880 mA. As expected, there is a significant drop in power
usage when the data is compressed.

Edge AI and Energy-efficient Vehicular Services

Connected autonomous vehicles are driven using several
services. Identifying the services/applications that allow a
trade-off between energy and accuracy is essential. Depend-
ing upon the services and their fundamentals, such as data-
processing approach, computational complexity, onboard, and
communication latency, these services can be further divided
on the possibility of relaxing the need for full precise op-
eration through approximation. An approximation can also
be implemented on the sensed data, using data compression
and offloading mechanisms to enhance the onboard energy-
saving. In vehicular services that share data, computing and
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Fig. 6. Edge-AI Pipeline

energy optimization can be achieved using data aggregation
and resource allocation mechanisms, which are very popular
in federated and distributed learning settings.

As the future vehicular ecosystem will consist of distributed
edge devices, sensors, servers, roadside units, and heteroge-
neous networks [15], we can further explore the distributed
(machine) learning mechanisms across these devices to save
vehicle’s onboard energy and use the distributed computation
functionality [21]. An envisioned Edge-AI pipeline is shown
in Figure 6. The pipeline consists of onboard sensors such
as camera, LiDar, radar, GPS, and communication devices in
the vehicle. Further, the pipeline includes computation and
decision-making, divided into data processing and comput-
ing. The data processing pipeline can perform tasks such as
offloading, labeling, real-time compression, and data sharing
for latency tolerable applications. The following block is
computing that performs onboard computation. The computing
block also implements model approximation and software
acceleration. For low latency applications (e.g., SLAM), the
input from sensors can be directly processed (by-passing data
processing mechanisms block) at the computing block (vehi-
cles onboard computing unit). In addition, this pipeline also
consists of Edge-server and devices placed within the vehicular
ecosystem. For latency, tolerable and collaborative applications



(e.g., traffic monitoring), sensed data from several vehicles
and infrastructure sensors could be offloaded (using vehicular
communication) to the edge-server, which also deploys the
computation and decision-making block. Furthermore, it con-
sists of a cloud or remote server that maintains the global DNN
model, legacy database, and services. Using such a pipeline
can open insights for multi-model data processing approaches,
efficient video streaming for in-vehicle infotainment, energy-
aware adaptive mechanisms, and Edge-AI techniques to facili-
tate the vehicular services collaboratively within the connected
vehicle-Edge ecosystem.

V. CONCLUDING REMARKS

This paper explores energy efficiency mechanisms using
approximate functions for data-intensive vehicular services at
the edge/onboard computing unit. Focus is given to services
such as semantic/HD maps, as the task requires heavy volume
data processing via AI models, which makes them compute
intensives. We explored the potential of AI model approxi-
mation using an approximate function for the convolutional
layer. Using a convolutional layer/filter is a trend for percep-
tion/semantic tasks in connected vehicles, and this layer also
occupies the majority of processing power during inference.
Our further study can target approximating the fully connected
layer and balanced approximation of the whole model. These
investigations can further reveal the impact of approximation
on the model accuracy and favorable trade-off for energy-
accuracy on the resource-constrained devices.
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