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ABSTRACT

In this poster we present IoTurva, a platform for securing Device-

to-Device (D2D) communication in IoT. Our solution takes a black-

box approach to secure IoT edge-networks. We combine user and

device-centric context-information together with network data to

classify network communication as normal or malicious. We have

designed a dual-layer tra�c classi�cation scheme based on fuzzy

logic, where the classi�cation model is trained remotely. �e re-

motely trained model is then used by the edge gateway to classify

the network tra�c. We have implemented a proof-of-concept pro-

totype and evaluate its performance in a real world environment.

�e evaluation shows that IoTurva causes very small overhead

while it works with minimal hardware, and that our model training

and classi�cation approach can improve system e�ciency and user

privacy.

1 INTRODUCTION

With growing popularity of Internet-of-�ings (IoT) and online

services, edge networks are becoming even more densely populated.

Latest generation of IoT devices are developed to cooperate with

each other to improve automation in smart homes and industrial

environments. Commonly seen examples of such connected IoT-

systems are automated lighting systems and lock systems.

�e IoT devices collect a lot of user related information in order

to improve user experience. However, these devices are potentially

vulnerable and could be compromised by a malicious actor [6, 7].

In a typical edge network, there are no security measures to detect

a malicious or compromised device and to prevent it from talking

to other devices in the network. External a�ackers can use these

compromised devices as a foothold and a�ack other benign devices

in the same network. �ese infected IoT devices can then be used,

for example, as a part of a larger DoS campaign [8]. �erefore, it

is crucial to monitor and control device-to-device (D2D) tra�c in

the edge networks to identify and isolate malicious devices, and

prevent them from infecting larger parts of the network.

Unfortunately, due to their constrained nature, traditional secu-

rity solutions do not help with IoT devices. For example, automated

so�ware patching, anti-virus solutions, and host-based �rewalls

are very rarely seen on constrained IoT devices. On the other hand,

traditional network perimeter security systems, such as IDS, IPS,

and �rewalls, are deployed at the edge of the network and thus do

not necessarily help in scenarios where an infected device connects

and spreads malware to devices connected to same network [4].

We propose IoTurva to address the aforementioned security

problems in IoT networks. Our solution is an easy to deploy, low

cost, and scalable approach for securing one of the most vulnerable

pieces in the of network security puzzle, such as the SOHO edge

networks. Our proposal classi�es the network activity of any user

device, namely network host, as normal or malicious, and updates

network con�guration at runtime in order to prevent a malicious

device from communicating with other devices in the same network.

We use context information to improve our classi�cation model for

detectingmisuse a�acks where a seemingly normal D2D interaction

between two hosts on the same network is, in fact, untrusted and a

potential a�ack.

IoTurva prototype evaluation shows that our solution is easy

to deploy and e�ective in securing edge networks. �e fuzzy dual–

layer classi�cationmodel classi�es tra�c e�ciently in real-time and

is suitable for a small–medium sized edge networks (≤ 20 connected

to an AP) without signi�cantly a�ecting user experience.
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Figure 1: System design for IoTurva.

�e high level system design is shown in Fig. 1. IoTurva consists

of two primary components i.e. Turva Gateway and Turva Service.

�e Turva Gateway serves as an access point typically deployed

in edge network and is responsible for tra�c classi�cation as well

as enforcement of security policies in the IoT network. Turva

Gateway o�oads intensive tasks such as model training, training

data collection, and mobility support to Turva Service. �e Turva



Service is a logically centralized entity supporting one or more

Turva Gateway installations across edge networks.

2.1 Turva Gateway

We designed Turva Gateway as an improvised gateway or access

point typically used to setup SOHO edge networks. �e lightweight

design allows us to deploy it using minimal hardware resources e.g.

Raspberry PI or legacy APs. �e primary tasks of Turva Gateway

include tra�c monitoring and enforcement of security policies

required to prevent any malicious devices from communicating to

other devices in the network.

Figure 1 shows three major operations performed by Turva Gate-

way. First, it monitors all the tra�c passing �owing through the

network. Second, it classi�es every network interaction using a set

of rules (security policies) to be either malicious or normal tra�c

�ow. Finally, once classi�ed, it updates network rules to block any

malicious tra�c �ows in the network.

�e monitoring and enforcement mechanism are implemented

using so�ware-de�ned networking technologies, where Turva Gate-

way runs an OpenFlow-switch and a lightweight SDN-controller.

�e SDN-controller uses classi�cation module to classify every

unique network tra�c �ow it monitors. Based on classi�cation

results, it generates OF-rules necessary to allow or block (when

classi�ed as malicious) the given tra�c �ow(s). �e rules used for

tra�c classi�cation are obtained from Turva Service.

In IoT networks, Turva Gateway also acts as a sensor, which

aggregates network statistics, tra�c signatures and other network

data to be shared with Turva Service, if required. Sharing this

information, in aggregated and anonymous form, can protect user

privacy and improve training process of tra�c classi�cation model.

2.2 Turva Service

�e logically centralized Turva Service can be deployed as a single

service or a set of services colluding together to generate clas-

si�cation model for classifying network tra�c data. Two main

components of Turva Service are 1) classi�cation model training
engine, which is responsible for feature extraction, feature anal-

ysis, and model training; and 2) the contextual engine, which is

responsible for collecting context information from user devices.

In order to improve the classi�cation accuracy and generalization

of classi�cation model, Turva Service should get data from multiple

sources to develop a global view. Its design allows to easily plug-in

data from 3rd party sources e.g. network middleboxes, perimeter

security solutions, and device logs to improve model accuracy.

2.2.1 Training data collection. : A primary source of data col-

lection can be Turva Gateway(s) as they provide insights of most

commonly observed a�acks, device usage pa�erns, and ratio of clas-

si�cation model hit/miss. Incentivized crowd-sourcing campaign

can be used to collect signatures for normal and malicious device

activity. Anonymized submissions, threshold-based acceptance cri-

teria, user reputation, voting mechanism, etc., can also be used

to overcome issues related to data quality and user privacy [3, 5].

Furthermore, public CVE [1], CWE [2] and malware databases [9]

are reliable sources for obtaining information about latest vulner-

abilities. Besides, device and service manuals also o�er a lot of

details about related services and features for any IoT devices. �is

information gives valuable information about cross device interac-

tions and dependencies which are used in our training classi�cation

model.

In addition, the testbeds developed by researchers working on

IoT security and communications can provide in-depth data about

device vulnerability and cross-device dependencies. �ese testbeds

can also be used to individually monitor device behavior and inter-

action mode in several states. IoTurva can use such data to model

device behaviors and identify (signatures of) abnormal device in-

teractions. A combination of these models can be further used to

capture multi-level a�acks using cross-device interactions.

2.2.2 Model training. We use Fuzzy C-means clustering tech-

nique to develop network tra�c classi�cation model. We obtain a

set of clusters from the training data and each of these clusters can

be represented as a security rule. �e set of rules are transferred to

Turva Gateway devices where they are used for tra�c classi�cation.

Feature extraction and selection: In model training, we �rst ex-

tract a set of features from training data. In this work, we mainly

use network communication related features including network

and transport protocol headers (port numbers, transport protocols,

etc.). We also use features related to the context of the user and

device including geo-location, user actions, and device state. We

use Pearsons correlation coe�cient to measure linear dependency

among features and remove one of every two strongly linearly de-

pendent features. All the features are normalized in range [0, 1] to

avoid any e�ects over clustering algorithm.

Classi�cation engine: A�er feature selection, we assign each

sample data point X j (j = 1, 2, ...,n) (in training data) to cluster

Ci (i = 1, 2, ..., c ). Each of these clusters represents either normal
or malicious tra�c class. During training, we randomly assign

each sample X j to a cluster with random membership value µi j and
iteratively update Eq. 2 and Eq. 3 to minimize objective function

given in Eq. 1, where 1 ≤ i ≤ c and 1 ≤ j ≤ n.
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For each cluster i , clustering is performed n times with goal to

minimize within-cluster-sum of distances to best �t the data. At the

end, each cluster can be represented as a rule e.g.

Ri : if F1 ∈ A1, F2 ∈ A2, ..., Fk ∈ Ak , ..., Fh ∈ Ah =⇒ y ∈ Bi

where Ak is subset of distribution for possible values of F . Set of
these rules are sent to Turva Gateway for tra�c classi�cation.

3 EVALUATION

We have implemented a prototype for IoTurva to evaluate its

performance in real world scenario. We setup Turva Gateway

2



using a Raspberry PI (R-PI) model B running Raspbian OS. We use

hostapd to setup R-PI as WiFi access point. R-PI is connected to

Internet and wired network using on board ethernet port. All wired

and wireless interfaces are bridged to OVS running on R-PI and

OVS is managed by our customized version of Floodlight controller

performing network monitoring, classi�cation and enforcement

tasks. Turva Service runs on a HP Core i5 Laptop running Ubuntu

16.04LTS connected to a remote network. We implemented feature

extraction and clustering using Python and scikit-fuzzy library and

a RestAPI for communcations between Turva Gateway and Turva

Service. �e test network contains 15 di�erent devices including

smart phones, tablets, �le server, PC, laptops and IoT devices.

For training data collection, we outlined di�erent scenarios por-

traying normal and malicious network communication among de-

vices connected to same network. We repeated same scenario for

n = 10 times for data collection, to avoid any biases or artifacts.

During evaluation, we followed same scenario using di�erent set

of devices to check the robustness of classi�cation model. We

use 11 devices with 10 interactions for each pair of devices to

get a total of 10 × 10 × 10 test scenarios. Table 1 shows that we

accurately classify malicious �ows and normal �ows with 96%

and 93.4%, achieving overall accuracy of 93.7%. Our classi�cation

model achieves F1-score of 0.753% with 96% sensitivity and 93.4%

speci�city and classi�cation precision of 0.62%.

Table 1: Confusion matrix

Predicted class

Malicious Normal Total

Actual class

Malicious 96 4 100

Normal 59 841 900

Total 155 845 1000

With increasing popularity of streaming and video on demand

services, minor deterioration in network performance can seriously

a�ect user experience and cause business losses. �erefore, we

have tested our system in real world setup to examine the impact

on user experience in terms of latency and throughput. �e results

plo�ed in Figure 2 show that the tra�cmonitoring and classi�cation

procedures introduce minor overhead on the latency experienced

by user.
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Figure 2: D2D communications latency using IoTurva

Table 2: �roughput (Mbps) achieved when using IoTurva.

Server D1 D2 D3 D4

S1 25.1 (±0.3) 33.5 (±0.1) 33.1 (±0.1) 42.9 (±0.1)

S2 16.4 (±0.9) 14.4 (±0.9) 14.1 (±1.3) 32.7 (±0.8)

S3 9.6 (±10.7) 8.9 (±12.1) 9.5 (±11.1) 16.1 (±6.3)

S4 17.7 (±3.1) 15.8 (±3.9) 16.6 (±3.2) 30.9 (±2.1)

Table 2 shows the e�ect on network throughput with IoTurva

in comparison with traditional network setup. We used local and

remote servers (deployed in Amazon and FUNET cloud) for this

test where S1: localserver,S2: iperf.funet.�, S3:iperf.sco�linux.com,
S4:bouygues.testdebit.info.

4 DISCUSSION

�e evaluation shows that IoTurva can e�ciently secure edge net-

works by identifying and blocking malicious D2D communications

in real time with high accuracy. �e seggregation of training and

classi�cation phases allows us to take the advantage of advanced

anomaly detection mechainsm without requiring special hardware

deployment in edge network. Currently, our model training focuses

on minimizng false-negatives to remove any exploitable weak links

in the network. However, our future work focuses on minimizing

false-positives as they a�ect user experience by obstructing normal

device operations (e.g. user is not able to use his smartphone to

unlock the door because system thinks its an a�ack). To support

incremental and easy deployment, Turva Gateway is designed to

have minimal resource footprint to enable deployment using PC-on-

a-card devices or legacy access points/gateways with OF support.

We will extend this work with improved data collection, data pro-

cessing schemes and improve our model to support classi�cation

of multi–level D2D interactions by incorporating state and other

device–based features.
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