
IoT Resource-aware Orchestration Framework for Edge
Computing

Niket Agrawal
Delft University of Technology

Delft, The Netherlands

Jan Rellermeyer
Delft University of Technology

Delft, The Netherlands

Aaron Yi Ding
Delft University of Technology

Delft, The Netherlands

ABSTRACT
Existing edge computing solutions in the Internet of Things (IoT)
domain operate with the control plane residing in the cloud and
edge as a slave that executes the workload deployed by the cloud.
The growing diversity in the IoT applications requires the edge
to be able to run multiple distinct workloads corresponding to
the dedicated inputs it receives, each catering to a specific task.
Achieving this with the current approach poses a limitation as
the cloud lacks the local knowledge at the edge and sharing this
knowledge regularly between the edge and the cloud will defeat
the very purpose of edge computing, ie, low latency, less network
congestion and data privacy. To solve this problem, we propose
an orchestration framework for edge computing that enables the
edge to actively initiate and orchestrate the workloads on request
by using the local knowledge available in the form of IoT resources
at the edge.
1 BACKGROUND AND MOTIVATION
The state of the art edge computing architectures for the IoT deploy,
monitor and manage the applications from a central control plane
in the cloud [7]. Applications are offloaded in form of lightweight
packages on the edge nodes as per a specific predefined configu-
ration supplied by the control plane. While this approach suffices
for scenarios offering a particular service at the edge, it fails to
address cases involving execution of multiple distinct workloads
triggered by the IoT device layer which is not in direct contact with
the cloud. We further highlight this through an example which
also forms our target use case for this work. Vehicles contact the
roadside infrastructure embedded with edge computing resources
to request a specific information [3, 5], for example, road condition
in the neighborhood. The type of requests may vary per vehicle or
any client in general and so will the corresponding applications to
be run on the edge to process those requests[2, 4]. Given the recent
trends in connected autonomous driving, the data feed for these
applications is generated by vehicles in vicinity which upload high
definition maps and images to the nearby roadside infrastructure
[3] where it is collectively processed and generated information is
shared with other vehicles. This mobility of the IoT resource makes
it challenging for the state of the art to fetch information regarding
it’s availability on the edge in order to allocate tasks adequately
to serve on demand requests. It is also not possible to efficiently
utilize intermediate results produced on the edge for serving future
requests in this manner as it would require multiple round trips
between the cloud and the edge for these details to be shared with
cloud. Moreover, hosting fixed applications on the edge for requests
that are initiated seldom, will result in those applications being
idle often, consuming the already scarce computing resources on
the edge. We identify this gap and propose an orchestration frame-
work that is completely driven by edge. It is capable of utilizing the

knowledge available in terms of IoT resource availability through
collaboration of edge nodes and offload tasks dynamically to serve
multiple on demand requests. [6] shares a similar idea as this work
but lacks to provide details on how the edge nodes will interact and
orchestrate tasks. Our proposed architecture can also enable the
integration of Complex Event Processing (CEP) Engine with Edge
computing[1]. CEP provides interesting patterns and can identify
critical events by fusing data from multiple IoT devices. Edge be-
ing in the vicinity of the IoT devices and the CEP can initiate the
deployment of emergency services and operate collaboratively to
take necessary actions.

Our primary goal in this work concerns with exploring the feasi-
bility of an edge driven IoT resource-aware orchestration architec-
ture for practical IoT use cases. We aim to tackle two major research
questions:

(1) How to orchestrate workloads dynamically by utilizing the
local knowledge available at the edge in form of IoT resources?

(2) What is the overhead due to this edge driven approach and
feasibility for practical use cases?

Our contributions are summarized as follows:
(1) Design an orchestration framework as described in Section

2 to utilize the knowledge available in form of IoT resources.
(2) Translation of the IoT resource awareness into orchestration

operations and commands that can be performed by edge
computing engines.

2 APPROACH
In Figure 1 we compare our proposed system architecture with
the state of the art in order to exhibit the benefits our system can
provide. Through this work we take the first step towards construct-
ing and operating the edge computing infrastructure in bottom-up
fashion rather than the conventional top-down strategy in the state
of the art that overlooks the IoT device layer and the context infor-
mation at the edge. The orchestrator is implemented as a software
pipeline in the edge that is responsible for carrying out a series of
tasks for each request that the edge receives. The description of the
software components that make up this pipeline is as follows.
Library - It holds the information about the application packages
corresponding to a particular request in form of key-value pairs
with a key (request) mapping to one or more application packages
that we assume are made available by a knowledgeable party.
Parser - It parses the inputs and fetches information about the cor-
responding application packages using the configuration library.
Frontend - The communication interface which enables reception
of client requests, IoT resource and and sending of resource updates
to other edge nodes.
Resource Manager - It maintains a catalog of the IoT resource
availability at each node and is responsible for communicating and



CoNEXT ’19, December 9-12, 2019, Orlando, Florida, USA Niket Agrawal, Jan Rellermeyer, and Aaron Yi Ding

Figure 1: Proposed system Architecture vs Existing approach

receiving updates regarding the same with other edge nodes each
time an IoT resource is uploaded on an edge node.
Resource Discovery - It determines the availability of the IoT re-
source needed by a workload and its location on the edge cluster
via the resource manager. It also monitors any updates to the re-
source itself and notifies the availability of a newer version to the
task manager to take appropriate actions, for example, restarting
task with new version as input. It further communicates with the
underlying container orchestration engine to fetch information
regarding the workloads running on the cluster to identify if results
from them can be utilized for future workloads.
Task Initiator - Translates the information from the above module
into commands for the underlying container orchestration engine
to launch the containerized tasks.
Accumulator - It accumulates results from all the application pack-
ages executed for a particular request and marks the end of the
processing pipeline. The results can be either be shared with the
client directly using appropriate wireless connectivity means or
with the cloud in case further processing is desired, the details of
which do not form the scope of this work.
To realize this framework, we foresee the following challenge.
The above modules work concurrently and in a distributed fashion,
ie, while the edge nodes receives a new request and runs it through
the pipeline, the IoT resource from a vehicle is being received and
associated updates are being shared across the edge nodes at the
same time. Our system lacks a leader node and any node can read
and write to the distributed data store. The rationale behind this
decision comes from the point that any node can ideally receive
an IoT resource or a client request and hence the need for a flat
hierarchy. Absence of a leader will lead to potential conflict, syn-
chronization and consensus issues and hence the overhead that
comes from the frequent inter node communication to solve them.

3 PRELIMINARY RESULTS
We plan to evaluate the system based on the overhead it generates
to service each client request with increasing number of applica-
tions and requests. Implementation of a proof of concept using

Docker Swarm as baseline is in progress. Docker only orchestrates
the workloads based on computing resource availability that are
predefined in a configuration file . We extend this with our edge
processing pipeline to also make it IoT resource-aware. To this
point, we are able to run the framework distributed on two separate
instances on a single host emulating two edge nodes. There is no
noticeable delay in resource management and resource discovery
across the two instances. Implementation of a communication link
with Docker to launch containerized tasks and access snapshots
is in progress. The framework will be fully evaluated on physical
nodes like Intel NUC and Raspberry Pi.

4 CONCLUSION
In this work we address the need for and develop an edge driven
orchestration framework for edge computing to handle evolving use
cases in the IoT domain. These use cases involve IoT context driven
services, mobile IoT resources and on demand client requests which
are infeasible to support using the existing cloud driven approach.
We aim to study the feasibility of such an architecture for practical
use cases and reflect on the trade-off it offers.

REFERENCES
[1] T. Sung P. Wang E. Jou C. Y. Chen, J. H. Fu and M. Feng. 2014. Complex event

processing for the Internet of Things and its applications. IEEE International
Conference on Automation Science and Engineering (CASE) (2014), 1144–1149.

[2] N. Zhang X. Yang H. Zhang W. Zhao J. Lin, W. Yu. 2018. A survey on Internet of
things: Architecture enabling technologies security and privacy and applications.
IEEE Access 6 (2018), 6900–6919.

[3] T. Braud P. Hui P. Zhou, W. Zhang and J. Kangasharju. 2018. ARVE: Augmented
Reality Applications in Vehicle to Edge Networks. Proceedings of the 2018Workshop
on Mobile Edge Communications, New York, NY, USA (2018), 25–30.

[4] J. Pan and J. McElhannon. 2018. Future Edge Cloud and Edge Computing for
Internet of Things Applications. IEEE Internet of Things Journal 5, 1 (2018), 439–
449.

[5] A. Y. Ding V. Cozzolino and J. Ott. 2019. Edge Chaining Framework for Black
Ice Road Fingerprinting. Proceedings of the 2Nd International Workshop on Edge
Systems, Analytics and Networking, EdgeSys ’19, Dresden, Germany (2019), 42–47.

[6] S. Zhang Y. Sahni, J. Cao and L. Yang. 2017. Edge Mesh: A New Paradigm to Enable
Distributed Intelligence in Internet of Things. IEEE Access 5 (2017), 1028–1031.

[7] L. Xing Y. Xiong, Y. Sun and Y. Huang. 2018. Extend Cloud to Edge with KubeEdge.
2018 IEEE/ACM Symposium on Edge Computing (SEC) (2018), 373–377.


	Abstract
	1 Background and Motivation
	2 Approach
	3 Preliminary Results
	4 Conclusion
	References

